TABLE OF CONTENTS TEXAS GULF COAST REGIONAL AIRPORT TXDOT SOLICITATION NO.: RFQ-2412ANGLE-00001

- 1. REQUEST FOR QUALIFICATIONS SOLICITATION
- 2. EVALUATION CRITERIA
- 3. PROJECT DIAGRAM
- 4. AIRPORT LAYOUT PLAN
- 5. INSTRUCTIONS FOR RESPONDING TO A SOLICITATION IN EGRANTS
- 6. TAXIWAY ALPHA PAVEMENT EVALUATION
- 7. FORM AVN-550-(PLEASE BE SURE TO DOWNLOAD THE MOST RECENT REVISED FORM DATED 8/2016)

Texas Department of Transportation Aviation Division Request for Qualifications (RFQ) for Professional Engineering Services

Brazoria County, through its agent, the Texas Department of Transportation (TxDOT), intends to engage a professional engineering firm for services pursuant to Chapter 2254, Subchapter A, of the Government Code. TxDOT Aviation Division will solicit and receive qualification statements for the current aviation project as described below.

Current Project: Brazoria County; TxDOT CSJ/Project No.: RFQ-2412ANGLE-00001. The TxDOT Project Manager is Robert Johnson, P.E.

Scope: Provide engineering and design services, including construction administration, to:

- 1. Reconstruct Parallel Taxiway A (from Runway 35 to Taxiway B).
- 2. Rehabilitate Parallel Taxiway A (from Taxiway B to Runway 17).
- 3. Rehabilitate Connector Taxiway B, E, G.
- 4. Realign Connector Taxiway C.
- 5. Install Runway 17-35 Medium Intensity Runway Lights.
- 6. Install Taxiway Medium Intensity Taxiway Lights.
- 7. Install Signs.
- 8. Install Precision Approach Path Indicators, Wind-Cone, Beacon, and Vault.

The Agent, in accordance with the provisions of Title VI of the Civil Rights Act of 1964 (78 Stat. 252, 42 U.S.C. §§ 2000d to 2000d-4) and the Regulations, hereby notifies all respondents that it will affirmatively ensure that for any contract entered into pursuant to this advertisement, disadvantaged business enterprises will be afforded full and fair opportunity to submit in response to this solicitation and will not be discriminated against on the grounds of race, color, or national origin in consideration for an award.

The proposed contract is subject to 49 CFR Part 26 concerning the participation of Disadvantaged Business Enterprises (DBE).

The DBE goal for the design phase of the current project is <u>7.5%</u> The goal will be re-set for the construction phase.

Utilizing multiple engineering/design and construction grants over the course of the next five years, future scope of work items at the Texas Gulf Coast Regional Airport may include the following: Fuel farm improvements.

Brazoria County reserves the right to determine which of the services listed above may or may not be awarded to the successful firm and to initiate additional procurement action for any of the services listed above.

To assist in your qualification statement preparation, the criteria, project diagram, and most recent Airport Layout Plan are available online at

http://www.dot.state.tx.us/avn/avninfo/notice/consult/index.html by selecting "Texas Gulf Coast Regional Airport" The qualification statement should address a technical approach for the current scope only. Firms shall use page 4, Recent Airport Experience, to list relevant past projects.

AVN-550 Preparation Instructions:

Interested firms shall utilize the latest version of Form AVN-550, titled "Qualifications for Aviation Architectural/Engineering Services". The form may be requested from TxDOT, Aviation Division, 125 E. 11th Street, Austin, Texas 78701-2483, phone number, (800)68-PILOT (74568). The form may be emailed by request or downloaded from the TxDOT website at *http://www.txdot.gov/inside-txdot/division/aviation/projects.html*. The form may not be altered in any way and <u>must not contain Quick Response (QR) codes or links</u>. The form fields must be completed in black font, without changing the existing font size or color, and must not contain any bold or italicized words. If a firm is non-compliant, the submittal of AVN-550 will be deemed as non-responsive. Firms must carefully follow the instructions provided on each page of the form. Qualifications shall not exceed the number of pages in the AVN-550 template. The AVN-550 consists of eight pages of data plus one optional illustration page. A prime provider may only submit one AVN-550. If a prime provider submits more than one AVN-550 or submits a cover page with the AVN-550, that provider will be disqualified. Responses to this solicitation WILL NOT BE ACCEPTED IN ANY OTHER FORMAT.

ATTENTION: To ensure utilization of the latest version of Form AVN-550, firms are encouraged to download Form AVN-550 from the TxDOT website as addressed above. Utilization of Form AVN-550 from a previous download may not be the exact same format. Form AVN-550 is a PDF Template.

The Form AVN-550 must be completed accurately to include the correct Airport Name and TxDOT Project ID number. The completed Form AVN-550 must be received in the TxDOT Aviation eGrants system no later than April 18, 2024, 2:00 p.m. (CDST). Electronic facsimiles or forms sent by email or regular/overnight mail will not be accepted.

Firms that wish to submit a response to this solicitation must be a user in the TxDOT Aviation eGrants system no later than one business day before the solicitation due date. To request access to eGrants, please complete the Contact Us web form located at *http://txdot.gov/government/funding/egrants-2016/aviation.html*

An instructional video on how to respond to a solicitation in eGrants is available at <u>http://txdot.gov/government/funding/egrants-2016/aviation.html</u>

Step by step instructions on how to respond to a solicitation in eGrants will also be posted in the RFQ packet at <u>http://www.dot.state.tx.us/avn/avninfo/notice/consult/index.htm</u>.

The consultant selection committee will be composed of local government representatives. The final selection by the committee will generally be made following the completion of review of AVN-550s. The committee will review all AVN-550s and rate and rank each. The Evaluation Criteria for Engineering Qualifications can be found at

<u>http://www.txdot.gov/inside-txdot/division/aviation/projects.html</u> under Information for Consultants. All firms will be notified and the top rated firm will be contacted to begin fee negotiations for the design and bidding phases. The selection committee does, however, reserve the right to conduct interviews for the top-rated firms if the committee deems it necessary. If interviews are conducted, selection will be made following interviews.

Please contact TxDOT Aviation for any technical or procedural questions at (800)-68-PILOT (74568). For procedural questions, please contact Sheri Quinlan, Contract Specialist. For technical questions, please contact Robert Johnson, P.E., Project Manager.

For questions regarding responding to this solicitation in eGrants, please contact the TxDOT Aviation help desk at 1-800-687-4568 or *avn-egrantshelp@txdot.gov*.

EVALUATION CRITERIA FOR ARCHITECTURAL/ENGINEERING QUALIFICATIONS

TxDOT Aviation recommends that the Selection Committee, in evaluating detailed qualifications from the listed architects/engineers, use the following criteria. They should suffice for most projects. You will notice that we have proposed scoring values for each criterion. Should there be special circumstances, criteria and their respective scoring values may be adjusted. Your TxDOT project manager will be glad to help should this be the case.

1. Recent experience of the project team with comparable airport projects within the past ten years.

(25 points)

Do the qualifications indicate that the project team has recent direct experience on other general aviation airports designing similar improvements to those proposed at this location? [Sources of information: Aviation Project Design Team Form, Recent Relevant Airport Experience Form, and possibly the Optional Summary.]

2. Proposed technical approach (30 points)

Does the architect/engineer provide evidence of understanding of the project; and any unique architectural/engineering aspects associated with the proposed project and how to address them? [Sources of information: Proposed Technical Approach to Project, and possibly the Optional Summary.]

3. Project design schedule and ability to meet schedules and deadlines (25 points)

Does the proposed design team have sufficient time to work on this project? Has the firm demonstrated an ability to meet design schedules in the past? Reasonableness of proposed schedule [Sources of information: Aviation Project Design Team Form, Recent Relevant Airport Experience Form, Project Design Schedule Form and possibly the Optional Summary.]

4. Construction Management Experience (20 points)

The architect/engineer will oversee the airport construction. Therefore, it is critical that the architect/engineer be involved in the day-to-day construction activities through a full-time resident project representative and periodic site visits. What evidence do the qualifications provide as to the architect/engineer's commitment to proactive and consistent representation during construction? [Source of information: Relevant Airport Experience form; proposed Technical Approach to Project; and possibly the Optional Summary]

#	Facility Name	Top Elevation fl agl*
101	Conventional Hangar	32.0
102	Conventional Hangar	32.0
103	Conventional Hangar	32.0
104	Conventional Hangar	32.0
105	Conventional Hangar	32.0
106	Box Hangar	30.0
107	Box Hangar	30.0
108	Box Hangar	30.0
109	Box Hangar	30.0
110	Restaurant	32.0
111	Conventional Hangar	36.0
112	Conventional Hangar	36.0
113	ARFF	30.0
114	Consolidated Fuel Farm	15.0
115	Box Hangar	30.0
116	Box Hangar	30.0
117	Box Hangar	30.0
118	Box Hangar	30.0
119	Box Hangar	30.0
120	Box Hangar	30.0
121	Box Hangar	30.0
122	Box Hangar	30.0
123	Box Hangar	30.0
124	Box Hangar	30.0
125	Box Hangar	30.0
126	Box Hangar	30.0
127	Box Hangar	30.0
128	Box Hangar	30.0
129	Box Hangar	30.0
130	Box Hangar	30.0
131	Box Hangar	30.0
132	Box Hangar	30.0

#	Facility Name	Top Elevation ft. agl*
133	Box Hangar	30.0
134	Box Hangar	30.0
135	Box Hangar	30.0
136	Box Hangar	30.0
137	T-Hangar	17.0
138	T-Hangar	17.0
139	T-Hangar	17.0
140	T-Hangar	17.0
141	Aircraft Maintenance/Repair/Overhaul or Manufacturing Complex	36.0
142	Electronics Manufacturing	24.0
143	Electronics Manufacturing	24.0
144	Warehouse Distribution	32.0
145	Warehouse Distribution	32.0
146	Warehouse Distribution	32.0
147	Warehouse Distribution	32.0
148	Warehouse Distribution	32.0
149	Electronics Manufacturing	24.0
150	Electronics Manufacturing	17.0
151	Electronics Manufacturing	17.0
152	Electronics Manufacturing	17.0
153	Electronics Manufacturing	24.0
154	Auto Part Manufacturing	17.0
155	Auto Part Manufacturing	17.0
156	Auto Part Manufacturing	17.0
157	Auto Part Manufacturing	17.0
158	Auto Part Manufacturing	17.0
159	Auto Part Manufacturing	17.0
160	Auto Part Manufacturing	17.0
161	Auto Part Manufacturing	17.0
162	Auto Part Manufacturing	17.0
*Top	elevation estimated based off common	structure

#	Facility Name	Top Elevation ft. msl
1	CONVENTIONAL HANGAR	61.2
2	CONVENTIONAL HANGAR	53.7
3	FUEL FACILITY	32.0*
4	CONVENTIONAL HANGAR	50.5
5	CONVENTIONAL HANGAR	61.4
6	FUEL FACILITY	28.3*
7	CONVENTIONAL HANGAR	55.8
8	FUEL FACILITY	32.0*
9	RESTAURANT (TBR)	61.4
10	TERMINAL BUILDING	61.4
11	CONVENTIONAL HANGAR	47.7
12	ELECTRICAL VAULT	9.9
13	ADS-B STATION	Unknown
14	ARFF (TBR)	45.3
15	AIRPORT BEACON	79.3
16	AIRPORT MAINTENANCE (TBR)	34.3
17	FUEL FACILITY	29.1
18	CONVENTIONAL HANGAR	44.4
19	14 UNIT T-HANGAR	38.5
20	10 UNIT T-HANGAR	41.2
21	6 UNIT T-HANGAR	39.4
22	10 UNIT T-HANGAR	36.5
23	20 UNIT T-HANGAR	36.1
24	20 UNIT T-HANGAR	36.6
25	AIRPORT MAINTENANCE SHOP	Unknowr
rbr *Top	= To be removed elevation estimated based off common st	ructure height

SURVEY MONUMENTS (PACS/SACS)				
DESIGNATION	PERMANENT INDENTIFIER	LATITUDE	LONGITUDE	
LBXE	AB3196	29° 06' 34.294"	95° 27' 51.165"	
LBX F	AH3515	29° 05' 50.929"	95° 27' 38.481"	
LJN D	AW7091	29° 06' 06.114"	95° 27' 40.535"	
LJN A	AW7089	29° 06' 50.168"	95° 27' 36.239"	

		LEGEND
EXISTING	ULTIMATE	DESCRIP
F	PL(U)	AIRPORT PROPERTY LINE
	N/A	AIRPORT PROPERTY LINE
N/A		DEVELOPMENT RESERVE
33 32	4	SECTION CORNERS
•	Θ	AIRPORT REFERENCE PC
*	N/A	AIRPORT BEACON
	•••••	ASOS
BRI	L 35' ———	BUILDING RESTRICTION L
		ASOS CRITICAL AREA
		ILS CRITICAL AREAS
		STRUCTURES ON AIRPOR
		STRUCTURE OFF AIRPOR
N/A		ABANDON/REMOVE
		HOLD MARKING
x	- • -•-••	FENCE LINE
		RUNWAY PAVEMENT
		TAXIWAY PAVEMENT
		APRON PAVEMENT
	DESIGNATION	PACS AND SACS
OFA		OBJECT FREE AREA
RSA	RSA(U)	RUNWAY SAFETY AREA
OFZ	OFZ(U)	OBSTACLE FREE ZONE
ZdOd	- 2303 - POF2	PRECISION OBSTACLE FF
		RUNWAY PROTECTION Z
TOFA	TOFA(U)	TAXIWAY OBJECT FREE A
TSA	TSA(U)	TAXIWAY/TAXILANE SAFE
¥	SAME	PAPI
*	*	MIRL/MITL
		ROADS/PARKING PAVED
	SAME	ROADS/PARKING UNPAVE
	SAME	TREFLINE

NO.	REVISIONS

Aviation Division

eGrants Workflow:		RFQ Response		
		Subgrantee Administrator (SA)		
eGrants Role:		Subgrantee Staff (SS)		
eGrants	link	https://apps2.dot.state.tx.us/apps/egrants2/logout2.a	<u>spx</u>	
eGrants	help:	eGrants help desk Monday – Friday 8AM – 4PM CD/ST (excludingstate/federal holidays)	
		avn-egrantshelp@txdot.gov or 1-800-687-4568		
STEP	ROLE	ACTIONS	NOTES	
01	SA	Go to View Opportunities.a. Select <u>Apply Now</u> to the opportunityb. The RFQ Response Menu is opened	Very important to click on the name of the document and not the organization name Make a note of the opportunity due date to ensure you respond in time	
02	SA/SS	Click on View, Edit and Complete Forms a. Select RFQ Applicant Form b. Confirm Project information and address c. Upload AVN-550, 550D, 551 or 551D <u>PLEASE MAKE SURE YOU SELECT THE</u> <u>CORRECT PDF FILE BEFORE CHANGING</u> <u>STATUS</u>.* d. Hit Save 	You should print the proposal document to a PDF so that it becomes un-editable. Or, you may upload a scanned copy of the AVN- 550, 550D, 551, or 551D.	
03	SA	When you are ready to submit your response, click on Save and submit to CS review <u>YOU ARE DONE</u>	You will get an email saying the response was successfully submitted; the status must be changed to RFQ Response in CS Review by the due date and time posted in the solicitation.	
04	SA/SS	WAIT UNTIL A SELECTION NOTIFICATION IS SENT TO YOU		
05	SS/SA	<u>AFTER SELECTION NOTIFICATION IS RECEIVED</u> Log in to view status of response. Once the scores are verified, TxDOT will move the response to an interview, selected or not selected status of which you can log in to see the status of your response.	The selection notification will refer users to eGrants to view the status of their response. User may also view the TxDOT website for selection information.	

*If the responder posts the incorrect file.

- If status has been changed and the due date for the response has not expired, contact the help desk to ask for the status to be administratively changed back to Response in Process.
- If the incorrect file was posted, the incorrect file may be deleted and the correct one posted as long as the status has not been changed to Response in CS Review. Respondent will need to check the "delete" box and hit save. The page refreshes. Then post the correct file, save, and change the status.

If you are not set up in eGrants and wish to respond to a posted solicitation, you may contact the aviation help desk for assistance by using the webform available at <u>eGrants Help Desk Form</u>

Some organizations will have many user members. Each organization should determine which user member will submit the completed avn-550, 550D, 551, or 551D in eGrants. after the opportunity is selected for the organization, it will no longer appear on any other user's home page unless the initiating user cancels the response.

Address: 814 Thornwick Drive Houston, TX 77079 Phone: 281-630-1888 E-mail: tdodson@Civil-PEs.com TBPE Firm No.: F-18997

Urgent

→ For review

Please comment

Please reply

Please recycle

TECHNICAL MEMORANDUM – FINAL

Date:	October 31, 2023		
To:	Robert Johnson, PE		
From:	Thomas D Dodson, PE $\neg D$	Proj.No.:	2212ANGLE 4222AVNAFI Work Order 1
Re:	Texas Gulf Coast Regional Airport – Condition Assessment of Taxiway A and Connectors	Civil PEs Proj.No.:	2212ANGLE
Cc:	File		

In accordance with the scope of services proposed in the assessment of the pavement of Taxiway A and its connectors, below is a discussion of the criteria used and calculations resulting in a program-level project scale and cost estimate for capital improvement programming. The purpose of this technical memorandum is to identify the pavement's structural capacity, provide a conceptual design for repairs, and estimate the construction cost of those designs. This discussion is arranged into topics listed below:

Executive Summary

A key component to assessing the rehabilitation needs of pavement at Texas Gulf Coast Regional Airport is the current aircraft traffic, and what design requirements will be in place with the determination of traffic levels and types. While a lengthy traffic history was available through the Traffic Flow Management System Counts (TFMSC), a new traffic data source from the airport's VirTower system, collected since February of 2023, was also available. With a comparison of the two sources, a full year of expected traffic data was extrapolated. The derived traffic data showed that a Dual Wheel, 100,000 lb. aircraft cohort easily met the 500 annual operations limit to be deemed the design aircraft. This design aircraft, along with a similarly derived fleet of lesser-weight aircraft were compiled into a fleet mix of traffic for the pavement analysis and rehabilitation design.

The existing taxiway pavement at the airport consists of three pavement sections, based on when the pavements were constructed and/or repaired. Using the thicknesses measured from the cores and HWD, pavement section layer strengths were derived using the FAA's "BAKFAA" software. These pavement sections, evaluated as both with standard pavement section materials, determined by back-calculation and statistically adjusted methods were found to have insufficient strength and require some level or rehabilitation to carry the existing traffic the airport currently experiences, much less the future.

Section Number	Pavement Section	Weight Rating	Comments
1	Remove 21", Asphalt (4") on Cement- Treated Base (5") on Quality Base (12")	S-79, D-100, 2D-157	Full-depth Rehabilitation
2	Mill and Replace Asphalt (4")	S-93, D-139, 2D-209	Existing base and subbase are significant in thickness
3	Mill and Replace Asphalt (4")	S-111, D-169, 2D- 250, 2D/2D2-697	Existing base and subbase are significant

Numerous pavement sections were evaluated for rehabilitation. The recommended sections are:

The recommended options in each Section will total approximately \$7,223,000 to construct. Other services, along with escalation at 8% for two years, brings the total project cost to just under \$10 million.

Description	Cost
Construction	\$7,223,000
RPR, CA Services, Material Testing	475,000
Contingency	770,000
2 yrs. Escalation	1,410,000
Grand Total	\$ 9,878,000

Contingency, professional services, and testing should be included for a programmed total cost of <u>\$9,900,000</u>. These costs are based on FY 2025 escalated values.

The discussion below details the methodologies and calculations carried out with this analysis. There are also four (4) attachments. They are:

Attachmont 1	Pavement Evaluation Study
Allachment	(HWD Preliminary Results)
Attachmont 2	Material Strength Calculations
Allachment Z	(Backcalculation Results)
Attachmont 2	Geotechnical and Pavement
Allachimeni S	Evaluation (Soils Report)
Attachment 4	FAARFIELD Pavement Designs

Project Development Criteria

The following assessment follows published methods and procedures published by the Federal Aviation Administration (FAA) in the assessment and design of pavement repairs. Design parameters utilize FAA pavement design software "FAARFIELD", latest edition. The following specific Advisory Circulars apply:

Document	Title	Notes
	Traffic Flow Management System	Annual Data – using 12 months from July 2022 through June 2023
150/5320-6D	Pavement Design	FAARFIELD Version 2.18
150/5000-17	Critical Aircraft and Regular Use Determination	An operation is an arrival or a departure, but since the pavement design is based on departures only, we used departures only for convenience.

Table 1 - Criteria for Analysis

Traffic levels have been previously reported. For the conceptual design to follow, using all the reported aircraft models creates a computational issue as FAARFIELD models each aircraft as input. Instead, we use generic aircraft configured by FAARFIELD to fill 14 different aircraft configurations – both single- and dual-wheel aircraft. For the sake of design requirements for the pavement, the traffic is based on critical aircraft being a generic dual-wheel, 100,000 lb. aircraft. The traffic mix for pavement design based on aircraft weight groups listed in the FAARFIELD software is as follows, using annual departures:

Aircraft Weight Group	12 Mos Departures
S-5	340
S-10	200
S-12.5	110
S-15	13
S-20	44
S-25	2
D-15	113
D-20	16
D-25	36
D-30	26
D-40	73
D-50	2
D-75	10
D-100	860

Table 2 - Design Traffic Mix

Taxiway Pavement Assessment

A review of plans from previous projects, confirmed by the cores taken, shows that there are primarily three pavement sections along Taxiway A and its connectors.

For the sake of the discussion in this assessment, the Sections are:

	Section	Location	Project(s)
n 1	Previously overlaid new	On the south end of the airfield	Original Construction in AIP Project 3-48-0238-10-93
Sectio	(About Sta 0+ to Sta 12+)	(up to Connector Taxiway B)	Overlaid in TxDOT CSJ 0212ANGLE
ection 2	A reconstructed pavement (About Sta 13+ to Sta 61+ and Sta 72+ to Sta 75+)	Taxiway A from TW B to past TW G, and again from south of TW J north and to the runway	Reconstructed to subgrade in TxDOT CSJ 0212ANGLE
3	A proviously overlaid payoment	All Connector Taxiways	Patch reconstructed to subgrade
reconstruction. (About Sta 62+ to Sta 71+)		Taxiway A from north of TW G to just south of TW J	in AIP Project 3-48-0238-13-95 Overlaid in TxDOT CSJ 0212ANGLE

Table 3 - Summary of Existing Pavement Sections

The Sections are located as shown in Figure 2.

Figure 1 - Pavement Layout by Sections

Heavy Weight Deflectometer Analysis

Heavy-weight Deflectometer (HWD) measures were taken on July 18, 2023, using a Dyna R-80 trailer-mounted deflectometer. Two drops were performed at each setup, with passes about 10 feet off the centerline of the taxiways on both sides. One set of drops was in the 30,000-pound range and another around 40,000 pounds. There is an additional evaluation of the HWD data, presented in Attachment 1 - Pavement Evaluation Study of Parallel Taxiway (Taxiway A) Texas Regional Gulf Coast Regional Airport (LBX), with our additional analysis discussed below.

Measured deflections in the 30,000-pound range were small and varied widely. The data was collected, but we only back-calculated pavement course strengths from the 40,000-pound drop data for this analysis. Backcalculation of the

HWD measures to determine the modulus of each pavement section was modeled through the FAA "BAKFAA" program. This program utilizes "seed" strength values for various parts of the pavement sections. For the discussion below, a comparison of the material measures versus the "seed" values is made to reference whether the material may be suitable for re-use in the new pavement design.

The complete tabulation of the backcalculated results are included in **Attachment 2**, organized by Section and Taxiway.

Backcalculation Results: TW A South of TW B (Section 1)

Section 1 was cored during this site investigation in one location, near Station 6+00 of our measures along TW A. The results effectively matched the pavement section as indicated in the overlay plans from Project 0212ANGLE:

2" Asphalt Overlay
4.5" Original Asphalt Surface
7" Quality Base (P-209)
~25" Lime Stabilized Soil

These measured section thicknesses were input as the pavement layers into BAKFAA.

Due to the relatively short length of this portion of the taxiway, only 12 and 13 drop locations were measured on the right and left sides, respectively.

Using the pavement sections listed above, we utilized the FAA's backcalculation model BAKFAA, version 3.4.2¹. For Section 1, we conducted two backcalculations of the pavement. The first backcalculation allowed the program to determine the modulus value of the two asphalt layers and the two underlying layers.

The total reported values from each backcalculation were also averaged for the section, and a standard deviation was subtracted from the average to report as an "85th percentile" value. However, due to the high variability of the backcalculated values in the surface asphalt, underlying asphalt, and base, using one standard deviation would result in unrealistically low values. Instead, we limited the standard deviation deduction to no more than 50% of the average. The limitation on the reduction made the lowest reported value to be no less than half the calculated average and is reported as a "corrected percentile" instead. The subgrade in Section 1 did not vary as much, and the 85th percentile value was reported for it.

Additionally, because the subgrade measures were made via a dynamic (HWD) loading, listed subgrade strengths are reduced to 1/2 the backcalculated strength. This is a conservative value for the static-load strength of the clay material in the subgrade². The results of the backcalculation of the section strengths are shown in Table 4:

Table 4 - Section 1: Full Backcalculation Results – Corrected or 85th Percentile

	Seed Value	Left Backcalc	Right Backcalc	Average
Surface Asphalt	200,000 psi	106,211 psi	143,121 psi	124,666 psi
Base Asphalt	400,000 psi	130,330 psi	203,822 psi	167,076 psi

¹ https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/ArtMID/3682/ArticleID/11/BAKFAA-330

² From NCHRP Report 372, as referenced in AC150/5320-6G, Appendix C, paragraph 3.14.7.

2212ANGLE - Assessment of Taxiway A and Connectors

	Seed Value	Left Backcalc	Right Backcalc	Average
Base	75,000 psi	59,156 psi	64,990 psi	62,073 psi
Subgrade*	9,000 psi	8,023 psi	8,516 psi	8,269 psi

* Value is reduced to ½ the back calculated value

A second backcalculation model was also run, holding the strength value of the asphalt surface material rather than letting the program back-calculate a value. This run did not yield useful results, so inclusion in this report was discarded.

Back-calculation Results: TW A North of TW B and All Connectors (Section 2)

Most of the taxiway pavement at the airport is comprised of Section 2. Taxiway A alone had 56 and 60 drop locations to the right and left of the centerline, respectively. As noted above, this pavement section was part of a taxiway-wide reconstruction and widening project constructed before 2004. The pavement section consists of the following layers:

4.7" Asphalt
8" Quality Base (P-209)
15.2" Granular Base (P-154)
~25" Lime Stabilized Soil

There are several locations where this pavement section occurs on the taxiway system at the airport:

- Taxiway A from Taxiway B to approximately 1000 feet south of TW H
- Connector Taxiways B, C, D, E, G, and the north connector to RW17
- The northern connector Taxiway A to the runway. •

The backcalculation results of the asphalt, base, and subbase varied widely, while the subgrade showed consistent results. As we did in Section 1, we applied a modified approach to using a standard deviation deduction that was no more than 50% of the average for the calculated results for all the drops. This 50% limitation is applied to the base and subbase. The subgrade had a low variability at around 25%. The strengths used for the design of Section 2 are listed in Table 5.

Table 5 - Section 2: Full Backcalculation Results – Corrected or 85th Percentile				
Sta 13+ to 61+	Seed Value	Left Backcalc	Right Backcalc	Average
Surface Asphalt	200,000 psi	217,747 psi	244,846 psi	231,297 psi
Base	75,000 psi	73,547 psi	88,358 psi	80,952 psi
Subbase	40,000 psi	15,422 psi	14,958 psi	15,190 psi
Subgrade*	9,000 psi	10,638 psi	6,962 psi	8,800 psi

-----.

* Value is reduced to ½ the back calculated value

The results, when compared to Section 1, are similar and are near the "seed" value expected for the material.

Back-calculation Results: Taxiway A North of Taxiway G (Section 3)

Section 3 pavement represents a reasonably small but still significant portion of Taxiway A that needs analysis to ensure this pavement is rehabilitated to function for the future as it represents a significant part of the operation (being along the route for the predominant departures at the airport) of the airfield pavement. This pavement was reconstructed in a project funded in 1995 and was overlaid with the construction of CSJ 0212ANGLE. The pavement section is as follows:

2" Asphalt Overlay
4.5" Original Asphalt Surface
18.5" Quality Base (P-209)
~12" Lime Stabilized Soil

Section 3 had 22 and 18 drops on the left and right sides of the centerline, respectively. The values reported below in Table 6 show the section items' corrected and 85th percentile values.

		Concelled of Colli		
	Seed Value	Left Backcalc	Right Backcalc	Average
Surface Asphalt	200,000 psi	182,281 psi	184,526 psi	183,403 psi
Base Asphalt	400,000 psi	228,561 psi	331,172 psi	279,867 psi
Base	75,000 psi	61,528 psi	62,795 psi	62,161 psi
Subgrade*	9,000 psi	9,991 psi	9,421 psi	9,706 psi

Table 6 - Section 3: Full Backcalculation Results – Corrected or 85th Percentile

* Value is reduced to ½ the back calculated value

The surface, base asphalt, and base material varied enough that the standard deviation exceeded 50% of the average, so the results reported in Table 6 are corrected, while the subgrade did not, resulting in only about 17% of the average. The base material, run in the model as a P-209 material, yielded a backcalculated result of about 83% of the seed value as P-209 base. Nonetheless, it is a very thick base material section – over one-and-a-half feet thick.

Site Visit and Existing Condition

On June 28 and 29, 2023, our geotechnical subconsultant cored pavements along Taxiways A and B to measure the pavement section and carry out Dynamic Cone Penetrometer (DCP) testing of the subgrade. Commentary and results of that fieldwork are discussed below and are included in Attachment 3 – Geotechnical and Pavement Evaluation Study of Parallel Taxiway.

Dynamic Cone Penetrometer Measures

Each of the six core locations was tested at the subgrade level using a dynamic cone penetrometer.

Figure 2 - DCP Field Testing

The data was used to confirm the existing subgrade strength. The strength is discussed in Attachment 2, but we summarized the values from the DCP and compared them to the backcalculated values. The backcalculated modulus values are uncorrected since DCP, like HWD, are dynamic measures of soil strength.

	DCP Result	Backcalculated Subgrade
Location	(Modulus in psi)	(Modulus in psi)
Bore 1B	13,000	21,900
Bore 2B	19,700	10,500
Bore 3B	19,400	19,300
Bore 4B	16,500	21,900
Bore 5B	16,900	27,000
Bore 6B	13,600	21,900

More study is needed to determine whether these two measures differ significantly. The reported backcalculated values above are specific to the drop location nearest the borehole, and the values do not include the 85th percentile reduction applied during the design process below.

FAARFIELD Design

As discussed above, each section was used with the BAKFAA software to determine the strength of the existing pavement layers. The next step in the process is to design rehabilitation that could fit with the existing pavement and meet the traffic volume already determined. The FAARFIELD program also sets minimum layer thicknesses, most particularly asphalt at 4", CTB at 5", and P-220 as a stabilized base at 12". Using minimum thicknesses can cause the pavement section to be much stronger than required. Since there is an existing pavement, most of the "design" is confirmation that the pavement section meets the design traffic and weights. Many of the following pavement sections utilize the FAARFIELD "Life" calculation. Any pavement life exceeding 20 years is considered sufficient to carry the design traffic. When new pavement sections (like concrete) are introduced, a design is run to determine the needed thickness of the parts of the new design section.

Since the design traffic has aircraft over 100,000 lbs, the design sections are required to include a stabilized base layer under the surface course³. We designed the pavements accounting for the backcalculated strength of the subgrade but made no assumptions that the lime-stabilized subgrade functioned as any part of the pavement section. When the design only involves an overlay (like a rehabilitation), we did not consider the addition of a stabilized base. Further investigation should be taken during design to determine if overlay design without a stabilized base beneath it constitutes a Modification of Standards (MOS). This analysis provides multiple options for pavement rehabilitation strategies through each of the three sections. All of the data output from the FAARFIELD design runs, including design reports, life calculations, PCR, and 5010 outputs are included in **Attachment 4**.

Section 1

As a first run, we conducted a life calculation using the subgrade, base, and original asphalt strengths from the backcalculated value listed above. Then, we used the FAARFIELD standard pavement layer for the asphalt overlay (current surface). The results were disappointing when using the traffic mix set for this analysis. The performance characteristics, consisting of the calculated pavement life, Pavement Classification Rating (PCR), and single, dual, and dual-tandem wheel weight limits (as 5010 data fields) are tabulated below:

Section 1: Ex	kisting Pavement Section Performance
Section	Asphalt (6.5") on Base (7")
Life	<mark>0 years</mark>
PCR	152/F/D/X/T
5010 Data	S-39, D-55

While the distress of the pavement in Section 1 is not readily apparent, significant materials are needed to strengthen the pavement section to carry the anticipated traffic. Below is a discussion on rehabilitation strategies, working with the existing pavement section when possible.

Option 1 – Remove all asphalt and some base to replace with P-304 Cement Treated Base and P-401 Asphalt

The first option under Section 1 rehabilitation is to remove the existing asphalt surface and original surfacing, then add new material to meet the stabilized base requirement and strengthen the overall pavement. The minimum thickness for asphalt is four (4) inches, and for cement-treated base is five (5) inches. Using this pavement section leaves only 4 ½ inches of remaining existing base. Upon running the FAARFIELD design using part of this existing base, the result is that there is not enough base to follow this section. The result of this option would be a full reconstruction (probably being able to keep the existing lime-stabilized subgrade but removing the top 7 ½ inches) made up of quality base (P-209) at 12 inches, cement-treated base (P-304) at five (5) inches, and asphalt surface (P-401) at four (4) inches. The performance characteristics of this section are:

Section 1: R	Rehabilitation Option 1
Section	Asphalt (4") on Cement-Treated Base (5")
Section	on Quality Base (12")
Life	20 years
PCR	322/F/D/X/T
5010 Data	S-79, D-100, 2D-157

³ FAA AC 150/5320-6G, paragraph 3.5.1.

This design section does not recycle any portion of the existing pavement.

Option 2 – Remove part or all the asphalt and overlay with asphalt.

The second option under Section 1 rehabilitation is strengthening the pavement with an asphalt overlay. The FAARFIELD design for asphalt overlay, when keeping some part of the original asphalt surface, requires two (2) inches as the minimum thickness of the remaining asphalt. For this design, we kept the bottommost two inches of the original asphalt and let the software design the required overlay to achieve the strength needed. The results are that 9 ½ inches of new asphalt are needed, resulting in a grade change of +5 inches. The performance characteristics of this section are as follows:

Section 1: Rehabilitation Option 2			
Section	Asphalt (9.5") on milled existing pavement		
Life	20 years		
PCR	327/F/D/X/T		
5010 Data	S-80, D-102, 2D-159		

A grade change of five inches is significant, given the relatively flat nature of the airfield. Additional engineering analysis is needed to verify if such an overlay could be achieved.

Option 3 – Remove surface and recycle in-situ base with P-220 Cement Treated Soil Base Course and P-501 Concrete Surface

The last option under Section 1 involves the idea of milling much of the surface and mixing the bottommost 12 inches of pavement (consisting of seven (7) inches of base and five (5) inches of asphalt) to form a stabilized base under the concrete. While life-cycle cost analysis is not part of the scope of this memo, we conducted concrete pavement designs for each Section to determine the pavement thickness needed to switch from asphalt to concrete. Concrete would also bring the taxiway to the same surface material as the adjacent runway. The resulting design from FAARFIELD was a 10 ½ inch concrete pavement over the stabilized base.

Section 1: Rehabilitation Option 3				
Section	Concrete (10.5") on Cement Treated Soil Base (12") via recycling of existing base			
Life	20 years			
PCR	333/R/D/X/T			
5010 Data	S-87, D-105, 2D-172			

This section adds 9 inches to the grade of the taxiway compared to the existing one. Such a rise in grade is probably not allowable. However, removing the pavement to lower the top of the subgrade (our field investigation found ~25 inches of lime-stabilized subgrade) to make room for the section could be a way to recycle this material to re-use it.

Section 2

For Section 2 pavement, we also conducted a life calculation using the subgrade strength and standard strengths for P-154 subbase, P-304 cement treated base, and P-401 asphalt at the layer thicknesses as found using the field investigation and listed in the backcalculation models discussed above. The result was surprising. At the traffic levels listed in the earlier technical memo, the Section 2 pavement has a life of over 50 years – which should not be treated

as a quantitative value – but indicates that the pavement section has sufficient strength to carry the current and anticipated traffic for the airport. We know the pavement's surface is distressed and needs renewal, but it is encouraging to know that pavement reconstruction is not required for much of the taxiway pavement.

Section 2: Existing Pavement Section Performance			
Soction	Asphalt (4.7") on Quality Base (8") on		
Section	Subbase (15.2")		
Life	>>20 years		
PCR	405/F/C/X/T		
5010 Data	5010 Data S-100, D-153, 2D-225, 2D/2D2-644		

Given the condition of the surface of the taxiway, some rehabilitation is warranted. The following discussion provides some options for each pavement section.

Option 1 – Remove surface and some base to replace with P-304 Cement Treated Base and P-401 Asphalt The first option under Section 2 rehabilitation is to remove enough of the existing pavement section to install a new layer of cement-treated base (as P-304 with a bond-breaker) under a new asphalt surface. Such a stabilized base was used in the runway pavement during its reconstruction. The results of the FAARFIELD design for this option yielded that a minimal layer of P-304 cement-treated base of five (5) inches was needed under a new four (4) inch asphalt surface.

Section 2: Rehabilitation Option 1			
Soction	New Asphalt (4") on Cement Treated Base		
Section	(5") on the existing base		
Life	>>20 years		
PCR	431/F/C/X/T		
5010 Data	S-106, D-161, 2D-238, 2D/2D2-671		

This pavement section typifies the over-design that can occur when minimum pavement sections are required.

Option 2 – Remove surface and recycle in-situ base with P-220 Cement Treated Soil Base Course and P-401 Asphalt

The second option under Section 2 rehabilitation is to remove enough of the existing pavement section to install a new layer of stabilized base under a new asphalt surface. This meets the requirements of the stabilized pavement section for aircraft weights but instead recycles the existing material. For this section design, we used a conservative assumption of the modulus value of the stabilized base, selecting half the CBR=100 value as outlined in the specification, using a modulus of 75,000 psi for the stabilized base (CBR=50). This value is already very close to the backcalculated value of the base material in its current section. The FAARFIELD results for this section are as follows:

Section 2: Rehabilitation Option 2			
Section New Asphalt (4"), Cement Treated Soil E (12") via recycling of existing base			
Life	>>20 years		
PCR	422/F/C/X/T		

5010 Data S-104, D-158, 2D-233, 2D/2D2-662

Stabilizing the base with some cement (but not creating a rigid pavement structure) would be beneficial for the longterm performance of the pavement, reducing the chances that a rigid layer will reflectively crack through the asphalt surface. A constructability review of the possibilities of recycling the section should be undertaken. Since the taxiway alignment is not changing, windrowing to stabilize part of the section may pose a logistical challenge on an active airfield.

Option 3 – Remove surface and overlay with P-401 Asphalt

The last option under Section 2 rehabilitation is to replace the existing pavement with an asphalt overlay that meets the design. Since this section relies on the existing pavement courses below the surfacing, we used the backcalculated values for the base, subbase, and subgrade and let FAARFIELD compute an asphalt thickness that gets over twenty (20) years on life calculation. We do this because the FAARFIELD program cannot design an overlay with the existing section removed (milled) but must leave at least two inches of the lowest asphalt. The results are much like the life calculation run on the existing pavement section. Because the course moduli values were not drastically different than the standard strength values provided by FAARFIELD on the sections for subbase and base, the overlay needed is the same as the existing pavement thickness of four (4) inches. The section is summarized below:

Section 2: Rehabilitation Option 3			
Section	Mill and Replace Asphalt (4")		
Life	>>20 years		
PCR	373/F/C/X/T		
5010 Data	S-93, D-139, 2D-209		

This rehabilitation method would likely be the fastest construction method, requiring only the existing surface to be milled and new pavement installed in its place to the same grade. Milling only three inches would result in a net one-inch gain in pavement elevation. However, confirmation that grades do not exceed the elevation of the adjacent part of the runway needs to be made to ensure airspace issues are not created with the pavement rehabilitation.

Option 4 – Remove surface and recycle in-situ base with P-220 Cement Treated Soil Base Course and P-501 Concrete Surface

The last option under Section 2 rehabilitation is to replace the existing pavement with a concrete pavement section.

Using the backcalculated values for subgrade and subbase, we designed a section using a stabilized soil-cement base. Using the stabilized base specified in P-220, we set the modulus to meet the CBR=100 full-strength value (150,000 psi). The resulting section has a ten (10) inch concrete surface with a twelve (12) inch P-220 stabilized base on the remaining subbase. The performance characteristics of the section are as follows:

Section 2: Rehabilitation Option 4			
Section	Concrete Pavement (10") on Cement		
Section	existing base		
Life	24 years		
PCR	311/R/C/W/T		

```
5010 Data S-84, D-102, 2D-178
```

Section 3

Much like Section 1, Section 3 was first run in FAARFIELD in a Life calculation using the measured subgrade, base, and original asphalt strength from the backcalculation measures above, along with standard values for the asphalt overlay. The resulting life, PCR, and strength ratings are surprisingly high.

Section 3: Existing Pavement Section Performance			
Section	Asphalt (6.5") on Base (18.5")		
Life	>>>20 years		
PCR	455/F/C/X/T		
5010 Data	S-111, D-169, 2D-250, 2D/2D2-697		

Option 1 – Mill 4" and replace with 4" P-401 Asphalt Surfacing

The performance characteristics are as follows for the existing section, and with a mill and replace 4" asphalt section:

Section 3: Rehabilitation Option 1			
Soction	New Asphalt (4") on existing Asphalt (2.5")		
Section	on Base (18.5")		
Life	>>>20 years		
PCR	455/F/C/X/T		
5010 Data	S-111, D-169, 2D-250, 2D/2D2-697		

Such values, like Section 2, do not require pavement strengthening. Renewal of the surface is all that should be programmed for this section of pavement. For the next section on costs, a mill and fill of four (4) inches of asphalt is programmed for pricing.

Option 2 – Remove surface and recycle in-situ base with P-220 Cement Treated Soil Base Course and P-501 Concrete Surface

In keeping with the other two sections, the only other option to present is for a concrete pavement surface design that fits with the existing pavement section. Since the aircraft weights are over 100,000 lbs and this would be considered a new section, adding a stabilized base beneath the concrete is warranted. Recycling the top 12 inches of the existing base, using specification P-220, is included in this design. There is little of the existing base that is not part of the recycling if the grade is maintained, but the new section is not thicker than the existing one. The performance characteristics of the concrete section are as follows:

Section 3: Rehabilitation Option 2			
Section	Concrete Pavement (9.5") on Cement Treated Soil Base (12") via recycling of existing base		
Life	>20 years		
PCR	301/R/C/W/T		
5010 Data	S-82, D-99, 2D-174		

Pricing

Pricing is pulled from the current (August 2023) unit pricing for the significant items consisting of:

- Cement Stabilization
- Flexible Base
- Asphalt
- Concrete

Other costs are wrapped into a significant contingency (50%) for the programming. We compared some recent project bid costs to the major items, and when electrical, drainage, and earthwork items are not also a part of the project, the major pavement items approach a level of half of the total project cost. For this project, we do not anticipate needing significant drainage or grading. We also do not expect a significant electrical or lighting component to the project. Therefore, we believe a 50% contingency on the project is appropriate.

Program Level Estimates of Capital Project

For project programming, the extent of the taxiway project is broken into three areas, matching the three Sections discussed above. The areas of each Section are:

Section 1: 9,820 SY Section 2: 40,570 SY Section 3: 5,820 SY

The areas are depicted in the layout shown in Figure 2 above.

For Asphalt, the lowest unit cost items for each Section were included and multiplied by the area of each Section. The results, summarized by Section and totaled, including construction professional services and escalation, are in Table 7 below. <u>Please note that this work would be considered rehabilitation as these pavements do not include</u> <u>installing a stabilized base but only replacing the asphalt surface</u>. Also, since the project's construction is not expected until Fiscal Year 2025, pricing includes anticipated inflation for two years.

Summary of	Summary of Project Costs by Option (Asphalt)				
Section 1	Total Area of 9820 SY	Most Economical Cost by Option 2: Asphalt (9.5") on milled existing pavement at \$186 per SY	\$1,826,520		
Section 2	Total Area of 40570 SY	Most Economical Cost by Option 3: Mill and Replace Asphalt (4") at \$89 per SY	\$3,610,730		
Section 3	Total Area of 5820 SY	Most Economical Cost by Option 1: Mill and Replace Asphalt (4") at \$89 per SY	\$517,980		
		Construction Total	\$5,956,000		
		RPR, Matls Testing, and Construction Admin	\$475,000		
		10% Contingency	\$644,000		
		2 year's Escalation (8%)	\$1,178,000		
		Program Project Total	<mark>\$8,253,000</mark>		

Tabla 0 Dra	loot Construction	n Cacto (Acn	halt) for Dra	arommina
Table 8 - Pro	nect construction	11 GOSIS (ASD	DITAILU TOT PTO	

If the desire is to strengthen the pavement section where feasible (Section 3 may not) by adding a stabilized base layer, recycling existing base material would be an option, but it adds more than 37% to the construction project total.

We also determined a project cost for concrete since the runway was constructed in concrete in 2007. Those costs are similarly calculated using the unit costs for concrete instead of asphalt.

Summary of	of Project Costs by Option	(Concrete)		
Section 1	Total Area of 9820 SY	Option 3: Concrete (10.5") on Cement Treated Soil Base (12") via recycling of existing base at \$348 per SY	\$3,417,400	
Section 2	Total Area of 40570 SY	Option 4: Concrete Pavement (10") on Cement Treated Soil Base (12") via recycling of existing base at \$345 per SY	\$13,996,700	
Section 3	Total Area of 5820 SY	Option 2: Concrete Pavement (10") on Cement Treated Soil Base (12") via recycling of existing base at \$345 per SY	\$2,007,900	
		Construction Total	\$19,422,000	
		RPR, Matis Testing, and Construction Admin	\$1,156,000 \$2,058,000	
2 year's Escalation (8%) \$3,767,00				
		Program Project Total	\$26,403,000	

Table 9 - Project Construction Costs (Concrete) for Programming

ATTACHMENT 1

Memorandum

Date:	October 30, 2023	ROBERT F. CARMICHAEL III
То:	Mr. Thomas D. Dodson, PE, Civil PEs, LLC.	R. ASSIS
From:	Frank Carmichael III, PE, and Mahsa Beizaei, PhD, EIT, HVJ A	Associates 10-30-2023
HVJ Project:	HG-22-10070.1	
Subject:	Pavement Evaluation Study of Parallel Taxiway (Taxiway A) T Gulf Coast Regional Airport (LBX)	exas Regional

The scope of work is to provide estimates of layer strengths in terms of modulus values calculated using non-destructive Falling weight Deflectometer (FWD) deflection test data and FAA BAKFAA 3.4 software for Civil PEs' use in preparing the pavement design analyses.

1 Typical Sections

Existing pavement sections were determined based on information from boring logs provided by HVJ SCTx regarding pavement layer thicknesses and material type. **Table 1** shows the identified pavement sections at each boring. The pavement boring logs and layout are included in the HVJ SCTx geotechnical study report in **Appendix A**.

Table 1. Import I avenient beetions							
Boring	T	Thickness (in.)					
	1 axiway	HMAC	Flex Base	Lime Stabilized Clay			
B-1B	А	6	7	25			
B-2B	А	4.5	23.5	12			
B-3B	А	4.5	23	10			
B-4B	А	6.5	18.5	12			
B-5B	А	5	23	7			
B-6B	В	4	23	10			

 Table 1. Airport Pavement Sections

2 Deflection Data and Backcalculation Analysis of Existing Pavement

Falling Weight Deflectometer (FWD) – HVJ collected deflection data with the FWD on July 21, 2023. The FWD data was collected to estimate the subgrade stiffness of existing pavement layers. Deflection tests were conducted at an average of 100-foot intervals on all taxiways, the parallel Taxiway A, and connecting taxiways B, C, E, and G. Pavement with higher deflection values indicate less stiff pavement structures and lower levels of support, while areas with lower deflection values indicate stiffer pavements and higher levels of support. The NDT deflection plots for the taxiways are available in **Appendix B**. The following table presents the NDT deflection statistics for different Taxiways.

Tavimon	Normalized D	eflection (mils)
Taxiway	W1	W7
A Left	11.00	1.29
A Right	10.25	1.31
B Left	11.57	1.29
B Right	12.94	1.43
C Left	10.48	1.17
C Right	10.43	1.18
E Left	14.07	1.53
E Right	12.97	1.43
G Left	10.52	1.21
G Right	12.03	1.19
Average	11.63	1.30
STD	1.33	0.12
COV	11.44	9.59

 Table 2. FWD Deflections Summary

BAKFAA 3.4.1 – Layer stiffness was estimated using the FAA BAKFAA software to analyze FWD data collected. BAKFAA Version 3.4.1 outputs are provided in **Appendix C**.

The pavement structures were modeled in BAKFAA using the reported pavement layers, shown in **Table 1**. As the COV of the FWD measured deflections are small based on **Table 2**, one representative cross section was considered as 4.0" of HMAC over 23.0" of flexible base in the backcalculation procedure. A summary of the BAKFAA backcalculated moduli of the pavement layers for all taxiways tested with representative layer thicknesses is presented in **Table 3**.

Section	Modulus (ksi)				
Section	HMAC	Base	Subgrade		
Taxiway A Left	1362.4	51.6	24.0		
Taxiway A Right	1632.0	50.5	24.9		
Taxiway B Left	1228.0	42.7	20.3		
Taxiway B Right	998.8	38.7	21.0		
Taxiway C Left	1357.4	54.3	21.7		
Taxiway C Right	1570.0	45.4	25.7		
Taxiway E Left	1310.3	27.5	17.6		
Taxiway E Right	1239.1	39.2	16.5		
Taxiway G Left	1379.8	49.8	22.9		
Taxiway G Right	1556.9	29.9	26.3		
Average	1363.5	43.0	22.1		
STD	189.2	9.2	3.3		
COV	13.9	21.3	15.0		
Min	998.8	27.5	16.5		
Max	1632.0	54.3	26.3		

Table 3. BAKFAA Backcalculated Layer Modulus

3 Limitations

This investigation was performed for the exclusive use of Civil PEs, LLC, for purposes of pavement design on parallel taxiway at Texas Regional Gulf Coast Airport (LBX) in Angleton, Texas. HVJ Associates, Inc. has endeavored to comply with generally accepted engineering practice common in the local area. HVJ Associates, Inc. makes no warranty, express or implied. The analyses and recommendations contained in this report are based on data obtained from non-destructive deflection testing of the pavement using the FWD and data supplied by HVJ HOU on pavement borings.

Appendix A

HVJ SCTx Geotechnical Study Report

APPENDIX C

CBR TEST RESULT

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOILS ASTM D-1883

Project: Evaluation Study of Parallel Taxiway	
--	--

Sample Location: Composite sample, Flexible Base

Liquid Limit: N/A Plas	stic Limit: N/A	L	Plasticity Index:	N/A
Method of Compaction: $\square A$	ASTM D698 ASTM D1557			
Sample Condition:	⊠ soaked	🗌 u	nsoaked	
No. of Blows:	10	25	65	
Dry Density Before Soaking (pcf)	: 109.5	114.3	123.5	

115.7 123.0

Dry Density After Soaking (pcf):	113.0	
Moisture Content:		

Before Compaction (%): Top 1-inch Layer After Soaking (%):	7.44 11.02	7.62 11.11	7.97 11.27
Swell (%):	0.15	0.09	0.04
Bearing Ratio (%): (⊠ soaked □ unsoaked)	4.17	13.30	40.03

Surcharge: 10 lbs.

	6120 S. Dairy Ashford Road Houston, Texas 77072-1010 281.933.7388 Ph 281.933.7293 Fax				
DATE: 09/06/2023	APPRC	VED BY: PD	PREPARED BY: RA		
CBR TEST RESULTS EVALUATION STUDY OF PARALLEL TAXIWAY					
PROJECT NO.:		DRAWING NO.:			
HG2210070.1		PLATE-1			

APPENDIX D

SIEVE ANALYSIS

APPENDIX E

DCP TEST RESULTS

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	ie Version: 1	10/21/16 07:33:30
SAMPLE ID:	Near 1-B		SAM	IPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	OLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAL	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized, Clay						
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	1	STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.1"W	1	Latitude (y):	29°05'59.9"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point belov	v surface (in.):		0.50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS										
# of Blows Penetration (6 in. (6 in. Blows Blows CBR CBR E (ksi) E > 0.5 E design)? E > 0.5 E design										
0	1.2	0	0.70		I					
5	7.2	5	6.70	6.4	8.4	YES	YES			
5	13.2	10	12.70	6.4	8.4	YES	YES			
9	19.2	19	18.70	12.3	12.7	YES	YES			
10	25.2	29	24.70	13.8	13.7	YES	YES			
14	31.2	43	30.70	20.1	17.4	YES	YES			
14	37.2	57	36.70	20.1	17.4	YES	YES			
					13.0	YES - Review Proof Rolling	Eavg. ≥ E design ?			

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	13.0		

Remarks:		
6" Asphalt		
33" Base		
Test Method:	Tested By:	Tested Date:

 Test Michol.
 Tested by.
 Tested Date.

 D6951
 Edgar
 09/11/2023

 Test Stamp Code:
 Omit Test:
 Completed Date: Reviewed By:

Test Stamp Code			Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized By:			Authorized Date:		

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	ie Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 2-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAI	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	1	STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'38.9"W	1	Latitude (y):	29°6'24.2"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS							
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design
0	0.4	0	-0.10				
5	6.4	5	5.90	6.4	8.4	YES	YES
10	12.4	15	11.90	13.8	13.7	YES	YES
15	18.4	30	17.90	21.8	18.3	YES	YES
20	24.4	50	23.90	30.0	22.5	YES	YES
25	30.4	75	29.90	38.6	26.4	YES	YES
28	36.4	103	35.90	43.8	28.6	YES	YES
					19.7	YES - Review Proof Rolling	Eavg. ≥ E design ?

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	19.7		

Remarks:		
4.5" Asphalt		
35.5" Base		
Test Method:	Tested By:	Tested Date:
D6951	Edgar	09/11/2023

Test Stamp Cod	le:		Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized Dur			Authorized Date:		

Т

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	STM - D6951 :: Fil	e Version: 10	/21/16 07:33:30
SAMPLE ID:	Near 3-B		SAN	IPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	OLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiway		SPECIAL	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized, Clay						
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	STAT	ION:		DIS	ST. FROM CL:		
Long. (x): 95°27'38.9"W	Latitude (y):	2	29°6'24.2"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]		Water Tal	ole Depth (ft.):			
Pavement Conditions:			Depth of z	ero point belov	v surface (in.):	().50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS									
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design		
0	0.5	0	0.00						
5	6.5	5	6.00	6.4	8.4	YES	YES		
16	12.5	21	12.00	23.4	19.2	YES	YES		
14	18.5	35	18.00	20.1	17.4	YES	YES		
19	24.5	54	24.00	28.4	21.7	YES	YES		
22	30.5	76	30.00	33.4	24.1	YES	YES		
24	36.5	100	36.00	36.8	25.6	YES	YES		
					19.4	YES - Review Proof Rolling	Eavg. ≥ E design ?		

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	19.4		

Remarks:		
4.5" Asphalt		
33" Base		
Test Method:	Tested By:	Tested Date:
D6951	Edgar	09/11/2023
Test Method: D6951	Tested By: Edgar	Tested Da 09/11/2

00931	Eugai			09/11/20
Test Stamp Code	:	Omit Test:	Completed Date:	Reviewed By:
1.00				

J.E.				
Locked By:	TxDOT:	District:	Area:	
Authorized By:			Authorized Date:	

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	le Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 4-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAI	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	1	STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.2"W	l	Latitude (y):	29°6'58.6"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.	.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS								
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design	
0	0.9	0	0.40					
4	6.9	4	6.40	5.0	7.1	YES	YES	
9	12.9	13	12.40	12.3	12.7	YES	YES	
15	18.9	28	18.40	21.8	18.3	YES	YES	
14	24.9	42	24.40	20.1	17.4	YES	YES	
19	30.9	61	30.40	28.4	21.7	YES	YES	
19	36.9	80	36.40	28.4	21.7	YES	YES	
					16.5	YES - Review Proof Rolling	Eavg. ≥ E design ?	

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	16.5		

Remarks:		
6.5" Asphalt		
30.5" Base		
Test Method:	Tested By:	Tested Date:
D6951	Edgar	09/11/2023

Test Stamp Code			Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized By:			Authorized Date:	•	

Т

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	e Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 5-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAI	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:		STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.3"W		Latitude (y):	29°7'5.4"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

	DCP DATA ANALYSIS												
# of Blows	Penetration (6 in. intervals) Cumulative Blows		'enetration (6 in. Cumulative Cumulative intervals) Blows Penetration CBR E (ksi)		E > E (design)?	E > 0.5 E design							
0	1.2	0	0.70										
6	7.2	6	6.70	7.8	9.5	YES	YES						
8	13.2	14	12.70	10.8	11.7	YES	YES						
13	19.2	27	18.70	18.5	16.5	YES	YES						
17	25.2	44	24.70	25.0	20.0	YES	YES						
19	31.2	63	30.70	28.4	21.7	YES	YES						
19	37.2	82	36.70	28.4	21.7	YES	YES						
					16.9	YES - Review Proof Rolling	Eavg. ≥ E design ?						

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	16.9		

Tested By:	Tested Date:
Edgar	09/11/2023
	Tested By: Edgar

Test Stamp Cod	e:		Omit Test:		Completed Date:	Reviewed By:		
J.E.								
Locked By:	TxDOT:	District:	Area:					
Authorized By:			Authorized Date	c	-			

1

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook		ASTM	- D6951	-	ASTM - D6951 :: Fil	le Version: 10/21/16 07:33:			
SAMPLE ID:	Near 6-B		SA	MPLED DATE:	08/07/2023				
TEST NUMBER:	1		LE	TTING DATE:					
SAMPLE STATUS:			CONTR	ROLLING CSJ:					
COUNTY:	Brazoria			SPEC YEAR:	2014				
SAMPLED BY:	Edgar			SPEC ITEM:					
SAMPLE LOCATION:	Parallel Taxiwa	у	SPECIA	PROVISION:					
MATERIAL CODE:				GRADE:					
MATERIAL NAME:	Lime Stabilized	, Clay							
PRODUCER:									
AREA ENGINEER:			PROJEC						
COURSE/LIET:		STATION.		DIS	ST. FROM CL				
Long. (x): 95°27'40.3"W		Latitude (y):	29°6'6.5"N		Elev. (z):				
Material Classification:	All other types			Weather:	Cloudy				
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):					
Pavement Conditions:			Depth of zero point below surface (in.): 0.56						
Design Modulus (E) ksi:									

	DCP DATA ANALYSIS													
# of Blows	Penetration (6 in. intervals)	netration (6 in. Cumulative Cumulative CBR tervals) Blows Penetration		CBR	E (ksi)	E > E (design)?	E > 0.5 E design							
0	4.8	0	4.30											
4	10.8	4	10.30	5.0	7.1	YES	YES							
5	16.8	9	16.30	6.4	8.4	YES	YES							
9	22.8	18	22.30	12.3	12.7	YES	YES							
15	28.8	33	28.30	21.8	18.3	YES	YES							
20	34.8	53	34.30	30.0	22.5	YES	YES							
9	40.8	62	40.30	12.3	12.7	YES	YES							
					13.6	YES - Review Proof Rolling	Eavg. ≥ E design ?							

.

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	13.6		

Tested By:	Tested Date:
Edgar	09/11/2023
	Tested By: Edgar

Test Stamp Co	de:		Omit Test:		Completed Date:	Reviewed By:					
J.E.											
Locked By:	TxDOT:	District:	Area:	Area:							
Authorized By:			Authorized Date:								

Appendix B

NDT Plots

Appendix C BAKFAA Backcalculation Outputs Taxiway A Left:

Structure Information Geometric Mean Arithmetic Mean Modulus, psi 1,362,374 Layer Modulus, psi Poisson's Interface Thickness, in Changeable? 0.35 1.00 4.00 0.35 1.00 23.00 0.40 1.00 0.00 00 Yes 1 51,569 2 00 Yes 0,00 3 00 24,041 Yes In batch mode, FWD data displayed is for last point only. = 7578 Station Plate Radius = 5.91 in Plate Load = 41,901 lbf ISM = 644 kip/in 4 5 7 Sensor 12 2 3 6 0.0 12.0 24.0 36.0 48.0 60.0 72.0 Offset, in 65.0 65.0 41.3 23.1 16.4 10.6 6.3 5.9 64.7 42.0 23.0 14.4 10.4 8.2 6.8 Meas Defl, mil Calc Defl, mil RMS Error (%) = 13.8 Number of Iterations = 161 Point Comment = Comment:

Taxiway A Right:

Structure Information Geometric Mean Arithmetic Mean Poisson's Interface Thickness, in Changeable? Layer Modulus, psi Modulus, psi 1 2 00 00 1,631,998 Yes 0.35 1.00 4.00 50,515 0.35 1.00 23.00 Yes 24,929 1.00 3 00 0.40 0.00 Yes In batch mode, FWD data displayed is for last point only. Station = 7657 Plate Radius = 5.91 in Plate Load = 42,788 lbf ISM = 758 kip/in Sensor 1 2 3 4 5 6 7 Offset, in Meas Defl, mil 7.0 Calc Defl, mil RMS Error (%) = 10.2Number of Iterations = 185 Point Comment = Comment:

Taxiway B Left:

```
Structure Information
         Geometric Mean Arithmetic Mean
                                                   Poisson's Interface Thickness, in Changeable?
          Modulus, psi Modulus, psi
Layer
                                                   0.35 1.00
0.35 1.00
                                                                                               Yes
 1
          1,228,021
                               1,320,633
                                                                                   4.00
                                49,707
 2
           42,710
                                                                                   23.00
                                                                                                   Yes
                                 20,820
 з
           20,272
                                                     0.40
                                                                   1.00
                                                                                  0.00
                                                                                                  Yes
In batch mode, FWD data displayed is for last point only.
           = 301
Station
Plate Radius = 5.91 in

        Plate Load
        = 42,821 lbf

        ISM
        = 909 kip/in

                     1 2 3 4 5 6
0.0 12.0 24.0 36.0 48.0 60.0
                                                  4 5
                                                                           7
Sensor
Offset, in
                                                                       72.0
                      47.1 30.4
47.0 31.0

        30.4
        18.7
        16.3
        9.3
        6.5

        31.0
        18.8
        13.2
        10.1
        8.2

Meas Defl, mil
                                                                        5.7
                                                                        6.8
Calc Defl, mil
RMS Error (%) = 14.7
Number of Iterations = 128
Point Comment = Comment:
```

Taxiway B Right:

Structure Information Geometric Mean Arithmetic Mean Poisson's Interface Thickness, in Changeable? Layer Modulus, psi Modulus, psi 998,797 1,143,948 0.35 1.00 0.35 1.00 1 4.00 Yes 38,691 87,061 23.00 Yes 2 20,973 3 21,748 0.40 1.00 0.00 Yes In batch mode, FWD data displayed is for last point only. = 300 Station Plate Radius = 5.91 in Plate Load = 43,007 lbf ISM = 1,023 kip/in Sensor 12 2 3 4 5 6
 1
 2
 3
 4
 5
 6
 7

 0.0
 12.0
 24.0
 36.0
 48.0
 60.0
 72.0

 42.1
 24.6
 14.1
 12.6
 6.4
 4.8
 4.0

 42.0
 24.8
 14.1
 9.8
 7.5
 6.0
 5.0
 Offset, in Meas Defl, mil Calc Defl, mil RMS Error (%) = 17.7 Number of Iterations = 152 Point Comment = Comment:

Taxiway C Left:

Structure Information Geometric Mean Arithmetic Mean Poisson's Interface Thickness, in Changeable? Layer Modulus, psi Modulus, psi 0.35 1.00 4.00 0.35 1.00 23.00 0.40 1.00 0.00 1 1,357,438 1,627,130 Yes 54,284 21,658 74,050 22,537 2 Yes Yes 3 In batch mode, FWD data displayed is for last point only. Station = 301 Flate Radius = 5.91 in
 Plate Load
 = 43,018
 lbf

 ISM
 = 1,116
 kip/in
 1 2 3 4 5 0.0 12.0 24.0 36.0 48.0 7 Sensor 6 60.0 72.0 Offset, in Meas Defl, mil Calc Defl, mil 38.623.614.011.938.623.614.410.5 8.0 8.2 6.1 4.9 6.7 5.6 RMS Error (%) = 7.7 Number of Iterations = 151 Point Comment = Comment:

Taxiway C Right:

Structure Information Geometric Mean Arithmetic Mean Modulus, psiModulus, psiPoisson's Interface Thickness, in Changeable?1,569,9861,707,7610.351.004.00Yes Layer 0.35 1.00 1 45,391 66,084 26,098 0.35 1.00 23.00 2 Yes 25,704 3 1.00 0.00 Yes In batch mode, FWD data displayed is for last point only. = 300 Station Plate Radius = 5.91 in Plate Load = 42,843 lbf ISM = 986 kip/in 4 3 5 Sensor 1 2 6 7 0.0 12.0 24.0 36.0 48.0 60.0 43.5 27.1 16.7 12.2 8.7 7.6 43.4 27.3 16.5 11.7 9.1 7.4 Offset, in 72.0 5.5 Meas Defl, mil 7.6 Calc Defl, mil 6.2 RMS Error (%) = 5.0Number of Iterations = 156 Point Comment = Comment:

Taxiway E Left:

Structure Information Geometric Mean Arithmetic Mean Modulus, psi Modulus, psi Layer Poisson's Interface Thickness, in Changeable? 1,371,176 1,310,316 0.35 1.00 4.00 Yes 1 1.00 27,453 29,038 0.35 2 23.00 Yes 0.00 3 17,567 17,903 0.40 1.00 Yes In batch mode, FWD data displayed is for last point only. Station = 301 Plate Radius = 5.91 in Plate Load = 41,671 lbf ISM = 613 kip/in 4 Sensor 2 3 7 1 5 6 0.0 12.0 24.0 36.0 48.0 60.0 72.0 Offset, in Meas Defl, mil 68.0 46.0 25.9 20.7 Calc Defl, mil 67.8 46.6 27.0 17.1 12.0 8.5 6.3 12.3 9.7 8.0 RMS Error (%) = 13.6Number of Iterations = 149 Point Comment = Comment:

Taxiway E Right:

Structure Information Geometric Mean Arithmetic Mean Modulus, psi Modulus, psi Poisson's Interface Thickness, in Changeable? Laver 4.00 1 1,239,079 0.35 1.00 0.35 1.00 1,523,244 Yes 0.35 39,188 16,471 52,084 23.00 Yes 2 3 16,866 0.40 1.00 0.00 Yes In batch mode, FWD data displayed is for last point only. = 301 Station Plate Radius = 5.91 in Plate Load = 41,112 lbf ISM = 502 kip/in 7 5 Sensor 1 4 6 2 3 0.0 12.0 24.0 36.0 48.0 60.0 72.0 81.9 54.7 31.9 23.7 14.4 9.9 7.3 81.4 55.9 32.2 20.3 14.5 11.3 9.4 Offset, in Meas Defl, mil Calc Defl, mil RMS Error (%) = 13.5Number of Iterations = 119 Point Comment = Comment;

Taxiway G Left:

Structure Information Geometric Mean Arithmetic Mean Modulus, psi Modulus, psi 1,379,841 1,495,066 Poisson's Interface Thickness, in Changeable? Laver 0.35 1.00 4.00 Yes 1 1.00 49,769 63,420 2 0.35 23.00 Yes 3 22,857 23,596 0.40 1.00 0.00 Yes In batch mode, FWD data displayed is for last point only. Station = 300 Plate Radius = 5,91 in Plate Load = 42,843 lbf ISM = 924 kip/in Sensor 2 3 4 5 6 7 1 0.0 12.0 24.0 36.0 48.0 Offset, in 60.0 72.0 46.4 29.8 19.7 14.6 46.3 30.8 18.7 13.1 Meas Defl, mil 10.0 6.9 5.3 Calc Defl, mil 10.0 8.1 6.7 RMS Error (%) = 13.0Number of Iterations = 138 Point Comment = Comment:

Taxiway G Right:

Structure Information Geometric Mean Arithmetic Mean Poisson's Interface Thickness, in Changeable? Layer Modulus, psi Modulus, psi 42 0.35 1,556,854 1,753,056 1.00 4.00 Yes 29,911 49,080 0.35 1.00 23.00 Yes 29,511 3 0.00 26,586 0.40 1.00 Yes In batch mode, FWD data displayed is for last point only. = 300 Station Plate Radius = 5.91 in Plate Load = 42,591 lbf ISM = 867 kip/in 7 Sensor 1 2 2 4 5 6 0.0 12.0 24.0 36.0 48.0 49.1 28.7 17.0 13.5 8.7 Offset, in 60.0 72.0 Meas Defl, mil 6.4 5.5 Calc Defl, mil 49.1 29.0 16.8 11.9 9.2 7.4 6.2 RMS Error (%) = 9.0Number of Iterations = 112 Point Comment = Comment:

ATTACHMENT 2 Material Strength Calcs Section 1 - Taxiway A

DMI - ft Layer 1	1 Typ Layer	Thick B	ackcalculaS	Seed ModulLa	iyer 2 Typ Laye	er Thick E	Backcalcula S	Seed Modul Layer 3	Typ Layer Thick E	Backcalcula	Seed ModulLayer 4 Typ	o Backcalcula S	Seed Modu	Corrected S P	oisson's R Inte	erface PaChangeat	oleRemarks	LTE Case '
0+00 P-401/I	P-40;	2	772,118	200,000 P-	401/P-40;	4.5	1,298,457	400,000 P-209	7	468,132	75,000 Low Streng	1 48,765	9,000	24,383	0.4	1 Yes	Comment:	
1+05 P-401/I	P-40;	2	344,851	200,000 P-	401/P-40:	4.5	471,795	400,000 P-209	7	12,503	75,000 Low Streng	t 18,060	9,000	9,030	0.4	1 Yes		
2+00 P-401/I	P-40;	2	159,543	200,000 P-	401/P-40;	4.5	319,822	400,000 P-209	7	116,370	75,000 Low Streng	t 19,249	9,000	9,625	0.4	1 Yes		
3+00 P-401/I	P-40;	2	206,598	200,000 P-	401/P-40;	4.5	203,041	400,000 P-209	7	111,288	75,000 Low Streng	t 20,819	9,000	10,410	0.4	1 Yes		
4+13 P-401/I	P-40;	2	193,772	200,000 P-	401/P-40;	4.5	320,978	400,000 P-209	7	107,651	75,000 Low Streng	t 15,819	9,000	7,910	0.4	1 Yes		
4+99 P-401/I	P-40;	2	292,045	200,000 P-	401/P-40;	4.5	287,800	400,000 P-209	7	148,128	75,000 Low Streng	t 21,836	9,000	10,918	0.4	1 Yes		
6+06 P-401/I	P-40;	2	521,589	200,000 P-	401/P-40;	4.5	287,322	400,000 P-209	7	53,436	75,000 Low Streng	1 27,501	9,000	13,751	0.4	1 Yes	Bore 1B	
7+00 P-401/I	P-40;	2	237,853	200,000 P-	401/P-40;	4.5	330,175	400,000 P-209	7	89,072	75,000 Low Streng	1 23,984	9,000	11,992	0.4	1 Yes		
8+00 P-401/I	P-40;	2	316,517	200,000 P-	401/P-40	4.5	185,730	400,000 P-209	7	41,178	75,000 Low Streng	1 24,086	9,000	12,043	0.4	1 Yes		
9+07 P-401/I	P-40;	2	214,295	200,000 P-	401/P-40:	4.5	1,356,336	400,000 P-209	7	16,113	75,000 Low Streng	1 31,692	9,000	15,846	0.4	1 Yes	Comment:	'Drop 7
10+03 P-401/I	P-40;	2	124,386	200,000 P-	401/P-40:	4.5	87,389	400,000 P-209	7	262,001	75,000 Low Streng	1 39,268	9,000	19,634	0.4	1 Yes	Comment:	
11+05 P-401/I	P-40;	2	32,935	200,000 P-	401/P-40:	4.5	26,493	400,000 P-209	7	138,433	75,000 Low Streng	1 23,352	9,000	11,676	0.4	1 Yes		
12+03 P-401/I	P-40;	2	304,634	200,000 P-	401/P-40;	4.5	124,030	400,000 P-209	7	125,447	75,000 Low Streng	1 21,929	9,000	10,965	0.4	1 Yes		
Section 1 Avg			286,241	+86,241			407,644	+7,644		129,981	+54,981	25,874	+16,874	12,937				
	Std Devi	ation	180,813	50%	Std De	eviation	408,292	50%	Std Deviation	116,162	50%	Sto	I Deviation	4,421	34%			
	Adjusted \	/alue	143,121		Adjusted	d Value	203,822		Adjusted Value	64,990		Adju	sted Value	8,516				

LTE Case 1 LTE Case 1 Measured E Calculated I Calculated DMI - ft 0+00 12.73 7.34 5.46 4.43 18.95 9.98 7.35 19.2 9.64 6.18 13.73 53.77 19.16 1+05 73.92 30.74 20.48 13.23 8.62 7.71 75.56 51.78 30.69 56.62 17.97 2+00 39.7 26.36 16.6 12.62 8.21 6.69 57.41 37.57 25.47 3+00 58.11 24.63 38.3 14.75 11.09 8.12 5.9 58.64 36.02 23.91 16.74 25.62 6.42 63.42 4+13 63.03 45.12 28.57 17.8 13.09 43.57 30.28 21.7 4+99 47.84 40.46 16.68 18.38 8.29 6.87 5.3 49.91 32.81 22.64 16.19 30.79 9.28 5.87 50.69 12.37 6+06 50.65 18.82 30.85 18.54 11.7 7.46 7+00 52.38 14.48 32.67 18.96 18.67 10 7.47 5.81 52.09 32.85 21.08 8+00 36.49 36.64 64.86 21.64 14.03 10.08 7.2 6.28 64.83 21.09 13.89 9+07 52.91 26.8 16 11.16 7.83 6.17 4.96 47.68 32.57 18.98 11.44 19.85 8.98 48.83 10+03 48.88 13.06 7.02 6.43 4.95 20.43 13.18 8.98 11+05 118.16 36.31 21.75 13.57 9.69 8.56 5.78 118.3 35.21 22.08 14.75 15.22 12+03 59.31 35.06 22.94 10.93 7.8 6.02 59.43 33.84 22.47 15.83

Section 1 Av

culated I Calculated I Calculated I											
5.56	4.34	3.52									
13.35	10.3	8.5									
13.29	10.33	8.42									
12.35	9.61	7.85									
16.17	12.59	10.23									
12.05	9.38	7.63									
9.04	7.08	5.83									
10.63	8.28	6.79									
10.15	7.98	6.59									
7.78	5.96	4.94									
6.54	5.08	4.17									
10.67	8.29	6.87									
11.74	9.16	7.48									

DMI - ft Layer 1	1 Typ Layer	Thick E	Backcalcula S	eed Modulus	Layer 2 Ty	p Layer Thick	Backcalcula	Seed Modul Layer 3	3 Typ Layer Thick I	Backcalcula	Seed Modul Layer 4 Typ Lag	yer Thick B	ackcalcula	Seed Modul C	orrected SI	Poisson's R Inte	erface PaChange	able Remarks
0+00 P-401/F	P-40(2	751,135	200000	P-401/P-4	0; 4.5	1,268,119	400000 P-209	7	451,601	75000 Low Strengt	0	47,067	9000	23,534	0.4	1 Yes	Comment:
1+04 P-401/F	P-40(2	430,744	200000	P-401/P-4	0; 4.5	179,083	400000 P-209	7	78,686	75000 Low Strengt	0	23,427	9000	11,714	0.4	1 Yes	
2+02 P-401/F	P-40(2	14,976	200000	P-401/P-4	0; 4.5	37,562	400000 P-209	7	94,058	75000 Low Strengt	0	21,555	9000	10,778	0.4	1 Yes	
3+01 P-401/F	P-40	2	128,047	200000	P-401/P-4	0; 4.5	178,923	400000 P-209	7	90,337	75000 Low Strengt	0	20,498	9000	10,249	0.4	1 Yes	
4+03 P-401/F	P-40(2	81,604	200000	P-401/P-4	0; 4.5	98,287	400000 P-209	7	10,704	75000 Low Strengt	0	19,205	9000	9,603	0.4	1 Yes	
5+00 P-401/F	P-40	2	69,769	200000	P-401/P-4	0; 4.5	21,082	400000 P-209	7	56,403	75000 Low Strengt	0	26,529	9000	13,265	0.4	1 Yes	
6+00 P-401/F	P-40(2	31,434	200000	P-401/P-4	0; 4.5	42,165	400000 P-209	7	67,589	75000 Low Strengt	0	16,377	9000	8,189	0.4	1 Yes	Bore 1B
7+00 P-401/F	P-40(2	39,017	200000	P-401/P-4	0; 4.5	27,411	400000 P-209	7	76,980	75000 Low Strengt	0	19,259	9000	9,630	0.4	1 Yes	
8+09 P-401/F	P-40;	2	686,644	200000	P-401/P-4	0; 4.5	366,615	400000 P-209	7	20,116	75000 Low Strengt	0	29,775	9000	14,888	0.4	1 Yes	
8+57 P-401/F	P-40;	2	69,842	200000	P-401/P-4	0; 4.5	240,320	400000 P-209	7	109,089	75000 Low Strengt	0	21,108	9000	10,554	0.4	1 Yes	Comment:
9+00 P-401/F	P-40;	2	120,031	200000	P-401/P-4	0; 4.5	458,624	400000 P-209	7	235,591	75000 Low Strengt	0	30,968	9000	15,484	0.4	1 Yes	Comment:
10+01 P-401/F	P-40(2	74,409	200000	P-401/P-4	0; 4.5	95,041	400000 P-209	7	13,183	75000 Low Strengt	0	17,189	9000	8,595	0.4	1 Yes	
11+10 P-401/F	P-40(2	319,442	200000	P-401/P-4	0; 4.5	602,841	400000 P-209	7	156,593	75000 Low Strengt	0	17,244	9000	8,622	0.4	1 Yes	
12+04 P-401/F	P-40;	2	156,816	200000	P-401/P-4	0; 4.5	33,159	400000 P-209	7	195,434	75000 Low Strengt	0	23,088	9000	11,544	0.4	1 Yes	
Section 1 Avg			212,422	+12,422			260,659	(-139,341)		118,312	+43,312		23,806	+14,806	11,903			
	Std Devi	ation	234,766	50%		Std Deviation	328,535	50%	Std Deviation	112,015	50%		St	d Deviation	3,880	33%		
	Adjusted \	/alue	106,211		A	djusted Value	130,330		Adjusted Value	59,156			Adju	usted Value	8,023			

DMI - ft	LTE Case ' LTE Case ' LTE Case ' Measured E	Measured E	Measured E	CMeasured E	Measured E	Measured D	Measured E	Calculated I	Calculated	Calculated I	Calculated I	Calculated	[Calculated [Calculated I
0+00	17.94	12.28	8.84	14.69	6.65	5.8	5.09	19.62	14.23	10.34	7.63	5.77	4.51	3.66
1+04	56.34	33.48	20.91	14.72	10.54	8.35	6.84	56.37	33.3	21.09	14.55	10.73	8.39	6.88
2+02	129	39.22	24.47	15.11	11.57	7.84	6.29	129.1	39.03	23.73	15.74	11.32	8.77	7.35
3+01	64.54	40.55	24.93	15.34	9.74	7.57	6.09	65.18	37.9	24.31	16.71	12.25	9.53	7.81
4+03	129	60.44	28.71	15.77	12.27	9	6.44	128.87	60.86	27.24	16.35	12.04	9.66	8.1
5+00	129	33.81	19.69	11.45	8.98	6.46	5.49	129	33.75	18.63	12.35	9.09	7.17	5.96
6+00	121.13	55.11	28.37	14.75	9.86	6.98	6.58	121.81	49.41	30.2	20.22	14.68	11.43	9.46
7+00	129	46.37	25	14.99	11	8.94	6.8	128.91	43.35	26.17	17.46	12.7	9.91	8.21
8+09	54.57	33.94	19.11	11.06	8.72	6.32	5	54.54	34.02	18.83	11.57	8.16	6.38	5.3
8+57	'Drop 8 60.88	40.35	23.2	13.45	8.04	5.3	4.11	61.74	35.44	23.05	15.88	11.62	9.02	7.4
9+00	38.59	24.61	15.99	10.87	8.03	6.6	5.36	38.73	23.77	16.28	11.51	8.49	6.58	5.36
10+01	129	60.84	33.69	19.19	10.9	7.52	6	128.83	61.93	29.62	18.36	13.49	10.76	9
11+10	50.46	36.41	23.33	37.78	9.61	7.02	5.62	50.43	37.5	27.36	20.22	15.31	11.98	9.72
12+04	88.32	35.52	22.05	13.3	9	6.68	5.1	88.41	33.35	21.79	15.02	11.06	8.63	7.07

Section 1 Av

Sta 13+ to 61+	Left Backcalc	Right Backcalc	Average
Surface Asphalt	217,747	244,846	231,297
Base	73,547	88,358	80,952
Subbase	15,422	14,958	15,190
Subgrade	10,638	10,443	10,541
Sta 72+ to 75+ Surface Asphalt Base Subbase Subgrade	Left Backcalc 215,998 41,484 12,538 8,197	Right Backcalc 287,017 51,352 20,016 8,480	Average 251,507 46,418 16,277 8,339

DMI - ft L	ayer 1 Typ L	ayer Thick B	ackcalcula	Seed Modulus Layer 2 Ty	p Layer Thick Ba	ackcalcula	Seed Modul Layer 3	Typ Layer Thick B	ackcalcula S	Seed Modul Layer 4 Typ Layer	Thick B	ackcalcula S	eed Modulus	s - psi	Measured E N	leasured C	Measured C M	easured C
13+02.0 P	P-401/P-40	4.7	726,256	200000 P-209	8	69,310	75000 P-154	15.2	53,737	40000 Low Strengt	0	34,937	9000	17,469	38.54	24.24	13.75	8.67
14+01.0 P	P-401/P-40	4.7	287,236	200000 P-209	8	151,259	75000 P-154	15.2	38,600	40000 Low Strengt	0	26,945	9000	13,473	44.5	26.37	16.39	15.17
15+02.0 P	P-401/P-40	4.7	221,536	200000 P-209	8	152,014	75000 P-154	15.2	45,072	40000 Low Strengt	0	18,475	9000	9,238	50.24	33.49	21.65	25.55
16+01.0 P	P-401/P-40	4.7	411,429	200000 P-209	8	167,812	75000 P-154	15.2	16,195	40000 Low Strengt	0	24,423	9000	12,212	50.15	33.42	21.9	15.49
17+02.0 P	P-401/P-40	4.7	302,536	200000 P-209	8	186,162	75000 P-154	15.2	18,032	40000 Low Strengt	0	27,540	9000	13,770	48.33	31.9	19.47	14.06
18+05.0 P	P-401/P-40	4.7	326,556	200000 P-209	8	167,941	75000 P-154	15.2	20,935	40000 Low Strengt	0	24,080	9000	12,040	49.52	32.38	20.75	15.7
19+12.0 P	P-401/P-40	4.7	320,581	200000 P-209	8	188,486	75000 P-154	15.2	13,564	40000 Low Strengt	0	26,858	9000	13,429	50.79	34.58	21.18	15.11
20+05.0 P	P-401/P-40	4.7	300,086	200000 P-209	8	146,800	75000 P-154	15.2	41,307	40000 Low Strengt	0	19,341	9000	9,671	48.28	31.77	18.78	30.13
21+00.0 P	P-401/P-40	4.7	356,598	200000 P-209	8	184,726	75000 P-154	15.2	27.208	40000 Low Strengt	0	25.647	9000	12.824	44.4	28.03	18.92	18.33
22+01.0 P	P-401/P-40	4.7	371.575	200000 P-209	8	162,969	75000 P-154	15.2	15,183	40000 Low Strengt	0	31.861	9000	15,931	47.65	32.14	18.12	12.96
23+00.0 P	P-401/P-40	4.7	268,741	200000 P-209	8	212,885	75000 P-154	15.2	17.323	40000 Low Strengt	0	29,516	9000	14,758	46.95	31.04	18.9	12.46
24+01.0 P	P-401/P-40	4.7	339,777	200000 P-209	8	191.617	75000 P-154	15.2	11.693	40000 Low Strengt	0	27.605	9000	13.803	51.13	34.85	21.84	16.1
24+33.0 P	P-401/P-40	4.7	500.075	200000 P-209	8	180,434	75000 P-154	15.2	16.942	40000 Low Strengt	0	41.564	9000	20.782	39.67	26.68	15.05	10.55
25+01.0 P	P-401/P-40	4.7	393.805	200000 P-209	8	172.036	75000 P-154	15.2	21.262	40000 Low Strengt	0	27.462	9000	13.731	45.16	30.25	18.48	13.55
26+04.0 P	P-401/P-40	4.7	470.397	200000 P-209	8	172.061	75000 P-154	15.2	22,901	40000 Low Strengt	0	36.006	9000	18.003	40.57	25.46	14.48	9.86
27+03 0 P	P-401/P-40	4.7	328.354	200000 P-209	8	126,572	75000 P-154	15.2	49,541	40000 Low Strengt	0	25,586	9000	12,793	42.91	27.76	16.45	16.62
28+01 0 P	P-401/P-40	4.7	350,937	200000 P-209	8	195,109	75000 P-154	15.2	39,915	40000 Low Strengt	0	30,965	9000	15,483	37.48	24.23	15.74	11.22
29+03 0 P	P-401/P-40	47	365 773	200000 P-209	8	179 452	75000 P-154	15.2	57 144	40000 Low Strengt	0	28,036	9000	14 018	36.91	23 16	14 15	15 14
30+00.0 P	P-401/P-40	47	358 561	200000 P-209	8	194 165	75000 P-154	15.2	68 011	40000 Low Strengt	0	25 481	9000	12 741	36.33	23.10	14 85	19.34
30+99.0 P	P-401/P-40	47	427 620	200000 P-209	8	152 384	75000 P-154	15.2	64 920	40000 Low Strengt	٥Ľ	29 704	9000	14 852	34 84	23.10	15 17	10.01
32+07.0 P	P-401/P-40	47	341 010	200000 P-209	8	169 888	75000 P-154	15.2	21 889	40000 Low Strengt	0	26 821	9000	13 411	46.81	30.72	19.34	13 22
33+05.0 P	P-401/P-40	47	376 571	200000 P-209	8	174 016	75000 P-154	15.2	61 684	40000 Low Strengt	0	23,825	9000	11 913	38.67	24.91	15.32	21.07
34+00.0 P	P-401/P-40	47	400 945	200000 P-209	8	189 875	75000 P-154	15.2	23 553	40000 Low Strengt	0	38 656	9000	19,328	38.82	25.17	13.54	9.56
35+03.0 P	P-401/P-40	47	363 818	200000 P-209	8	163 801	75000 P-154	15.2	23,315	40000 Low Strengt	0	28 760	9000	14,380	44.9	29.2	17 76	12 61
36+02.0 P	P-401/P-40	47	441 666	200000 P-209	8	163,963	75000 P-154	15.2	23 421	40000 Low Strengt	0	30,082	9000	15 041	42.91	27.08	18.56	11 81
37+02.0 P	P-401/P-40	47	355 881	200000 P-209	8	173 734	75000 P-154	15.2	16 679	40000 Low Strengt	0	25 483	9000	12 742	49.62	31.76	20.41	20.71
38+01.0 P	P-401/P-40	47	418 870	200000 P-209	8	136 485	75000 P-154	15.2	11 531	40000 Low Strengt	0	21 845	9000	10 923	57 84	39 97	26.6	17.35
39+00.0 P	P-401/P-40	47	340 962	200000 P-209	8	229 895	75000 P-154	15.2	5 408	40000 Low Strengt	0	40 986	9000	20 493	52.95	37.2	20.0	16.05
40+00.0 P	P_401/P_40	47	417 299	200000 P 200	8	169 824	75000 P-154	15.2	19 485	40000 Low Strengt	0	28 328	9000	14 164	45 73	29.86	19.8	13.26
41+00.0 P	P-401/P-40	47	372 856	200000 P-209	8	34 912	75000 P-154	15.2	77 573	40000 Low Strengt	0	23,156	9000	11,101	57.35	32 72	19 93	13 49
42+08.0 P	P-401/P-40	47	298 638	200000 P-209	8	35 607	75000 P-154	15.2	81,321	40000 Low Strengt	0	13 503	9000	6 752	66.5	48.06	31 11	21 11
43+02.0 P	P_401/P_40	4.7	261 249	200000 F 200 200000 P-209	8	247 383	75000 P-154	15.2	11 328	40000 Low Strengt	0	23 586	9000	11 793	52 57	-10.00 37 15	24 42	15 91
44+01 0 P	P-401/P-40	47	401 737	200000 P-209	8	205 498	75000 P-154	15.2	21,586	40000 Low Strengt	0	20,000	9000	14 986	41 81	27.6	17 73	13 12
45+08.0 P	P_401/P_40	47	323 178	200000 P 200	8	188 809	75000 P-154	15.2	16 596	40000 Low Strengt	0	26,330	9000	13 165	49.05	32.08	21 33	14.9
46+04.0 P	P-401/P-40	47	342 167	200000 P-209	8	175 171	75000 P-154	15.2	6 876	40000 Low Strengt	0	23,000	9000	11 960	60 71	42.00	28.7	19 55
47+05.0 P	P-401/P-40	47	562 375	200000 P-209	8	114 160	75000 P-154	15.2	25 202	40000 Low Strengt	0	20,010	9000	13 523	46 15	29.73	19 13	13.05
47+46 0 P	P-401/P-40	47	527 467	200000 P-209	8	57 626	75000 P-154	15.2	55 667	40000 Low Strengt	0	42 250	9000	21 125	40.54	22.10	11 26	7 01
48+02.0 P	P-401/P-40	47	383 546	200000 P-209	8	162 041	75000 P-154	15.2	8 171	40000 Low Strengt	0	22 785	9000	11,393	59.04	43.5	27.18	18 21
49+00.0 P	P-401/P-40	47	296 815	200000 P-209	8	221 517	75000 P-154	15.2	11 766	40000 Low Strengt	0	22,700	9000	11,000	53 51	37.28	23.21	20.65
50+02.0 P	P-401/P-40	47	473 279	200000 P-209	8	156 637	75000 P-154	15.2	21 459	40000 Low Strengt	٥Ľ	24 735	9000	12,368	46.36	31.88	19.04	16.04
51+02.0 P	P-401/P-40	47	409 242	200000 P-209	8	125 237	75000 P-154	15.2	7 985	40000 Low Strengt	0	21,700	9000	10,937	64.01	45.38	28 78	19.6
52+09.0 P	P-401/P-40	47	183 329	200000 P-209	8	95 530	75000 P-154	15.2	83 016	40000 Low Strengt	0	15 316	9000	7 658	55 54	40 71	24.36	16.94
53+02.0 P	P-401/P-40	47	188,506	200000 P-209	8	225 751	75000 P-154	15.2	5 860	40000 Low Strengt	0	26,311	9000	13 156	64 11	46 17	27.79	19 17
54+05 0 P	P-401/P-40	47	465 523	200000 P-200	8	114 853	75000 P-154	15.2	7,960	40000 Low Strengt	0 0	29 726	9000	14 863	59 49	41 94	25.02	14 83
55+01 0 P	P-401/P-40	47	307 958	200000 P-200	8	162 948	75000 P-154	15.2	81 936	40000 Low Strengt	ñ	15 707	9000	7 854	45 12	31 01	18 7	34 56
56+03 0 P	P-401/P-40	4 7	1,148,280	200000 P-209	8	51 980	75000 P-154	15.2	70 031	40000 Low Strengt	0 0	31 619	9000	15 810	36.82	23.63	14 23	9.91
57+01 0 P	P-401/P-40	4 7	428 390	200000 P-209	8	227,414	75000 P-154	15.2	14,873	40000 Low Strengt	Õ	31,886	9000	15 943	42 28	29.5	19.03	11.98
58+00 0 P	P-401/P-40	4.7	413.305	200000 P-209	8	183,626	75000 P-154	15.2	13,683	40000 Low Strengt	0	25,168	9000	12,584	49.84	34.23	22.77	14.98
			,		-	,			,		-	,		,		· ··=•		

59+01.0 P-401/P-40(4.7	193,506	200000 P-2	209 8	618,189	75000 P	-154 15.2	3,564	40000 Low Str	rengt 0	49,485	9000
60+02.0 P-401/P-40	4.7	570,964	200000 P-2	209 8	135,569	75000 P	-154 15.2	11,473	40000 Low Sti	rengi 0	27,694	9000
61+04.0 P-401/P-40	4.7	481,490	200000 P-2	209 8	102,263	75000 P	-154 15.2	21,323	40000 Low Str	rengi 0	25,394	9000
72+02.0 P-401/P-40	4.7	225,837	200000 P-2	209 8	112,808	75000 P	-154 15.2	48,320	40000 Low Str	rengi 0	14,788	9000
73+02.0 P-401/P-40	4.7	352,087	200000 P-2	209 8	155,650	75000 P	-154 15.2	21,907	40000 Low Sti	rengt 0	28,760	9000
74+01.0 P-401/P-40	4.7	464,112	200000 P-2	209 8	171,320	75000 P	-154 15.2	22,095	40000 Low Str	rengt 0	30,902	9000
75+01.0 P-401/P-40	4.7	1,499,610	200000 P-2	209 8	6,043	75000 P	-154 15.2	94,699	40000 Low Str	rengt 0	17,374	9000
76+00.0 P-401/P-40	4.7	304,396	200000 P-2	209 8	80,819	75000 P	-154 15.2	42,624	40000 Low Str	rengt 0	19,244	9000
76+57.0 P-401/P-40	4.7	598,156	200000 P-2	209 8	89,582	75000 P	-154 15.2	10,544	40000 Low Str	rengt 0	31,453	9000
Section 2 Sta 13+ to 61+		390 574	+190 574		168 008	+93 008		29 916	(-10 084)		27 586	+18 586
Std De	viation	145 727	37.3%	Std Deviation	79 650	Δ7 Δ%	Std Deviation	22,010	50.0%	Std Deviation	6 699	24.3%
85th Per	rcentile	244,846	01.070	85th Percentile	88,358	11.170	Corrected Percentile	14,958	00.070	85th Percentile	20,886 h	n Percentile
Section 2 Sta 72+ to 75+		574,033	+374,033		102,704	+27,704		40,032	+32		23,754	+14,754
Std De	viation	430,612	50.0%	Std Deviation	54,173	50.0%	Std Deviation	27,640	50.0%	Std Deviation	6,793	28.6%
Corrected Per	rcentile	287,017		Corrected Percentile	51,352		Corrected Percentile	20,016		85th Percentile	16,961	n Percentile

50.45	36.59	26.35	16.84
51.65	35.08	22.61	16.02
51.57	32.21	21.54	14.3
55.58	39.77	24.71	32.76
46.13	28.79	18.17	13.76
41.86	27.34	17.47	12.2
67.47	48.15	32.07	18.47
54.96	34.78	19.67	27.48
56.43	37.13	22.64	14.06
	50.45 51.65 51.57 55.58 46.13 41.86 67.47 54.96 56.43	50.4536.5951.6535.0851.5732.2155.5839.7746.1328.7941.8627.3467.4748.1554.9634.7856.4337.13	50.45 36.59 26.35 51.65 35.08 22.61 51.57 32.21 21.54 55.58 39.77 24.71 46.13 28.79 18.17 41.86 27.34 17.47 67.47 48.15 32.07 54.96 34.78 19.67 56.43 37.13 22.64

- 13,793 3,350
- 24.3% 10,443

- 11,877 3,396 28.6%
- 8,480

DMI - ft	Measured C	Measured El	Measured [Calculated	Calculated	Calculated	Calculated	Calculated I	Calculated I	Calculated I
13+02.0	7.38	6.11	4.94	39.12	23.22	13.62	9.47	7.22	5.79	4.81
14+01.0	9.2	7.31	5.34	44.46	26.38	17.57	12.64	9.6	7.62	6.28
15+02.0	11.5	7.72	6.58	51.7	31.78	22.8	17.4	13.74	11.15	9.28
16+01.0	11.81	8.31	6.28	49.77	33.47	22.57	15.63	11.26	8.53	6.81
17+02.0	10.11	7.71	6.2	48.5	31.01	20.56	14.01	9.98	7.54	6.03
18+05.0	11.56	8.66	6.27	49.54	32.05	21.59	15.13	11.1	8.56	6.93
19+12.0	11.64	7.35	6.13	51.02	33.64	22.45	15.17	10.61	7.84	6.17
20+05.0	9.65	6.52	5.54	49.37	31.36	22.21	16.8	13.2	10.68	8.87
21+00.0	9.31	6.54	5.62	44.48	28.65	19.5	13.9	10.37	8.09	6.6
22+01.0	9.08	6.42	5.75	48	30.73	19.64	12.87	8.84	6.5	5.13
23+00.0	9.91	6.95	6.34	47.23	29.9	19.83	13.38	9.42	7.04	5.6
24+01.0	11.11	7.44	5.81	51.28	34.3	22.91	15.37	10.6	7.72	6
24+33.0	7.04	4.66	4.68	40.03	25.63	16.03	10.27	6.91	5	3.91
25+01.0	10.17	7.4	6.3	45.34	29.41	19.53	13.51	9.8	7.5	6.05
26+04.0	7.39	5.99	4.86	39.96	25.24	16.06	10.72	7.57	5.72	4.59
27+03.0	8.56	6.79	5.18	43.95	25.94	17.39	12.86	9.99	8.05	6.68
28+01.0	8.68	6.15	5.8	38.1	23.27	15.64	11.21	8.45	6.67	5.48
29+03.0	8.8	6.15	4.93	37.18	22.64	15.68	11.73	9.16	7.39	6.13
30+00.0	7.03	6.08	5.02	36.85	22.88	16.42	12.62	10.04	8.19	6.84
30+99.0	8.57	6.63	5.63	35.93	21.54	14.63	10.96	8.6	6.97	5.8
32+07.0	9.79	8.17	6.8	46.99	29.97	19.88	13.77	10.01	7.69	6.22
33+05.0	8.55	6.3	5.5	39.12	24.58	17.55	13.47	10.71	8.74	7.3
34+00.0	7.3	5.47	4.8	38.89	23.98	15.19	10.05	7.05	5.3	4.26
35+03.0	9.34	7.3	6.17	45.1	28.44	18.6	12.79	9.28	7.12	5.77
36+02.0	9.2	6.51	5.59	42.81	27.45	17.91	12.29	8.89	6.82	5.51
37+02.0	9.25	6.64	6.06	49.51	32.61	21.82	15	10.75	8.13	6.49
38+01.0	13.3	9.81	7.33	57.94	39.68	26.54	18.11	12.8	9.52	7.51
39+00.0	11.53	7.95	6.91	53.43	37.08	24.87	15.95	10	6.36	4.3
40+00.0	9.55	7.73	5.76	45.73	29.84	19.68	13.47	9.67	7.34	5.89
41+00.0	9.53	6.84	5.33	58.26	30.87	17.89	13.38	10.68	8.74	7.32
42+08.0	15.07	8.94	7.37	69.98	40.06	26.65	21.29	17.55	14.68	12.47
43+02.0	13.5	8.58	7.17	52.88	35.98	25.1	17.39	12.29	9.07	7.08
44+01.0	9.05	6.76	5.69	41.87	27.3	18.28	12.63	9.11	6.94	5.57
45+08.0	10.55	7.89	6.19	49.04	32.05	21.48	14.72	10.5	7.91	6.31
46+04.0	13.73	8.68	7.4	60.84	42.61	29.09	19.56	13.27	9.35	7
47+05.0	10.37	6.91	6.09	46.1	29.84	19.1	13.17	9.68	7.53	6.14
47+46.0	5.85	5.24	4.35	40.73	21.51	11.43	7.69	5.81	4.64	3.86
48+02.0	14.5	8.94	7.97	59.62	41.7	28.37	19.23	13.27	9.56	7.31
49+00.0	12.62	7.87	7.66	53.5	36.7	25.58	17.82	12.7	9.44	7.41
50+02.0	11.24	7.58	6.74	46.54	31.06	20.89	14.68	10.8	8.34	6.76
51+02.0	14.17	9.45	7.59	64.28	44.59	29.61	19.74	13.5	9.7	7.45
52+09.0	12.54	8.2	6.17	56.66	32.31	23.96	19.37	15.96	13.31	11.27
53+02.0	13.04	7.73	7.19	64.89	43.7	29.76	19.53	12.78	8.67	6.31
54+05.0	10.99	7.25	5.94	60.04	40.55	25.53	16.07	10.38	7.14	5.36
55+01.0	9.68	7.13	5.41	45.52	29.83	22.97	18.71	15.52	13.03	11.08
56+03.0	8.29	6.3	5.01	36.83	23.61	14.23	10.07	7.83	6.36	5.31
57+01.0	9.48	6.53	5.89	42.6	28.65	19.25	13.04	9.1	6.69	5.23
58+00.0	11.48	8.16	6.87	49.72	33.91	23.01	15.83	11.25	8.39	6.62

Right

59+01.0	12.17	7.96	7.23	50.79	36.14	26.52	18.08	11.73	7.39	4.67
60+02.0	10.96	6.55	5.89	51.45	35.33	22.99	15.21	10.43	7.58	5.9
61+04.0	10.78	7.27	6.12	51.37	32.91	20.8	14.15	10.28	7.94	6.46
72+02.0	12.35	8.66	7.02	58.09	36.15	26.31	20.58	16.58	13.64	11.45
73+02.0	9.93	6.37	4.91	46.06	28.88	18.71	12.75	9.18	7.02	5.68
74+01.0	8.68	6.56	5.51	41.91	27.13	17.73	12.11	8.7	6.63	5.34
75+01.0	15.97	9.32	9.05	66.93	49.54	30.63	19.64	14	10.98	9.11
76+00.0	9.02	5.31	5.37	55.82	33.13	22	16.42	12.9	10.46	8.72

Section 2 St

Section 2 St

Right

15:00 P.401F-4C 47 315.41 2000 P.20 8 155.00 P.45 152 17.78 4000 Lex Sheep 0 20.88 77.76 5000 15.78 47.44 13.48 20.44 11.65 14.6	DMI - ft Laye	r 1 Typ L	ayer Thick E	Backcalcula	Seed Modulus La	yer 2 Typ Layer Thic	k Backcal	cula Seed Modul L	ayer 3 Typ Layer Thi	ick Ba	ickcalcula See	ed Modul Lay	ver 4 Typ Lay	er Thick B	ackcalcı Se	eed Modulus - (Corrected S N	leasured C	Measured El	leasured E M	leasured D
H-107 0-PARTH-LE J-7 J-707 PARTH-LE J-7 J-707 PARTH-LE J-748 J-748 <thj-748< th=""> <t< td=""><td>13+00.0 P-40</td><td>1/P-40</td><td>4.7</td><td>315,418</td><td>200000 P-2</td><td>209</td><td>8 185,</td><td>196 75000 F</td><td>P-154 15</td><td>5.2</td><td>17,738</td><td>40000 Low</td><td>v Strengt</td><td>0</td><td>27,476</td><td>9000</td><td>13,738</td><td>47.44</td><td>31.48</td><td>20.48</td><td>13.67</td></t<></thj-748<>	13+00.0 P-40	1/P-40	4.7	315,418	200000 P-2	209	8 185,	196 75000 F	P-154 15	5.2	17,738	40000 Low	v Strengt	0	27,476	9000	13,738	47.44	31.48	20.48	13.67
15-62.0 P4319-42 4.7 471.079 2000 P238 8 147.41 152 22,554 40000 Loc Sharp 0 22.122 900 15,010 42.68 27.86 17.46 14.69 47.1 153.893 9000 15.847 47.8 25.87 47.8 25.87 9000 15.847 47.8 25.87 47.8 25.87 9000 15.847 47.8 25.87 9000 15.847 47.8 25.87 9000 15.847 47.8 25.87 14.87 14.87 14.77 15.97	14+07.0 P-40	1/P-40	4.7	396,724	200000 P-2	209	8 171,	338 75000 F	P-154 15	5.2	14,536	40000 Low	v Strengt	0	30,868	9000	15,434	47.11	31.74	19.87	12.08
-6:00.0.PAUR-PAU -4:1 10:00 2:000 P:000 10:00 2:000 P:000 10:00 2:000 P:000	15+02.0 P-40 ⁻	1/P-40	4.7	407,079	200000 P-2	209	164,	781 75000 F	P-154 15	5.2	22,554	40000 Low	v Strengt	0	32,122	9000	16,061	42.68	27.26	17.24	11.38
17-06 47.0 2.47.2 2010 P420 8 18.742 7000 P145 15.2 2.4988 40000 Los Marriel 0 2.15.8 54.04 2.65.8 14.04 18-01.0 P410+A4 47 38.848 20000 P209 8 15.66 7.900 P145 15.2 2.14.84 40000 Los Marriel 0 23.158 5000 16.07 4.64.8 8.87.1 16.69 4.64 2.77 2.500 17.14 15.07 11.3 17.16 5.65 4.96 8.77 17.16 5.65 4.96 8.77 17.16 15.2 2.14.14 4.000 Los Marriel 0 23.55 9.000 16.74 4.13 5.73 4.400 2.14.14 4.7 4.75 2.500 P.41.4 1.2 1.77 15.06 17.18 1.10 11.9 <	16+02.0 P-40 ⁻	1/P-40	4.7	1,169,343	200000 P-2	209	3 17,	717 75000 F	P-154 15	5.2	109,969	40000 Low	v Strengt	0	26,020	9000	13,010	48.26	30.34	18.06	14.65
18-10 19-40 4.7 255.88 20000 P-209 6 8.47.9 7500 P-14 15.2 (6.10) 4000 Low Simingl 0 27.72 9000 15.86 54.4 44.6 20.80 15.77 55.46 7500 P-144 15.2 28.468 4000 Low Simingl 0 23.88 9000 16.78 54.84 25.71 15.85 25.00 15.74 55.86 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 15.71 15.84 14.11 15.71 15.84 14.11 15.71 15.84 14.11 15.71 15.84 14.11 17.72 15.71 15.84 14.11 17.71 15.84 14.11 17.71 15.84 14.11 15.71 15.84 14.11 14.11	17+08.0 P-40	1/P-40:	4.7	311,282	200000 P-2	209	188,	742 75000 F	P-154 15	5.2	24,958	40000 Low	v Strengt	0	33,893	9000	16,947	41.76	25.57	16.07	10.81
19430 PA010 ⁴ 407 343.484 20000 PA39 8 152,443 152 21,443 4000 Lox Shring 0 32,153 9000 16,70 45.48 72,10 11,1 1500 PA010 ⁴ 41,3 25,51 9000 16,76 41,63 17,7 22,58 11,1 1500 PA010 ⁴ 42,33 9000 16,76 41,64 12,2 23,43 4000 Lox Shring 0 33,58 9000 16,466 41,41 23,73 150,2 11,1 1500 PA010 ⁴ 44,00 14,24 150,0 14,400 Lox Shring 0 33,22 9000 16,464 12,1 13,1 150,0 14,48 14,2 150,0 14,48 14,2 14,34 4000 Lox Shring 0 33,22 9000 16,464 12,1 13,1 150,0 14,1 152,2 14,43 4000 Lox Shring 0 33,22 9000 16,448 31,4 14,13 21,5 14,43 14,5 152,4 14,13 14,5 153,2 14,13 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14	18+01.0 P-40	1/P-40:	4.7	539,289	200000 P-2	209	8 84,	779 75000 F	P-154 15	5.2	16,202	40000 Low	v Strengt	0	27,712	9000	13,856	54.49	34.46	20.89	14.97
0-000 P40FP-40C 47 138613 20000 P209 8 1141 7500 P-154 152 28.43 4000 Low String 0 83.588 9000 16.468 47.67 22.58 15.02 1118 224.00 P-401P-44C 47 285.560 20000 P-209 8 142.49 7500 P-154 15.2 25.43 4000 Low String 0 3.322 9000 16.864 44.41 3.372 3000 7.167 55.58 31.77 19.44 4.468 23-610 P-401P-44C 47 24.85 20000 P.209 8 172.47 7500 P-154 15.2 45.84 4000 Low String 0 3.868 9000 19.448 33.74 2.143 13.16 75.52 9000 15.87 4.14 14.16 75.52 13.15 11.66 24-014 P-41P-44C 47 37.562 20000 P.208 8 15.27 15.48 4000 Low String 0 3.16.8 9000 15.42 4.14 4.15 15.15 11.57 11.57 11.55	19+03.0 P-40	1/P-40:	4.7	324,948	200000 P-2	209	155,	486 75000 F	P-154 15	5.2	21,488	40000 Low	v Strengt	0	32,158	9000	16,079	45.48	28.71	16.91	10.8
11-02 P401P-400 47 435.86 20000 P200 8 124.40 76000 P154 152 75.20 40000 Mos Shring 0 31.888 9000 16,741 41.81 25.73 15.20 113 22-010 P 441P-400 47 234.55 22000 P 229 8 173.25 75000 P 154 15.2 15.94 40000 16.93 33.22 9000 16.64 64.41 30.33 17.8 87.2 17.45 75000 P 154 15.2 15.94 40000 16.98 9000 15.97.4 14.9 24.91 4000 16.92 43.15 21.56 14.52 21.66 40000 16.92 43.15 23.68 9000 15.96 43.15 23.68 9000 15.96 43.15 44.55 23.96 14.52 24.56 30.000 15.92 43.15 24.55 30.000 15.92 43.15 14.85 14.57 14.56 14.57 14.57 14.56 14.57 14.56 14.57 14.56 14.56 14.56 14.56 14.57 14.56 14.57 14.56 <td>20+00.0 P-40</td> <td>1/P-40:</td> <td>4.7</td> <td>1,386,613</td> <td>200000 P-2</td> <td>209</td> <td>3 11,</td> <td>341 75000 F</td> <td>P-154 15</td> <td>5.2</td> <td>268,462</td> <td>40000 Low</td> <td>v Strengt</td> <td>0</td> <td>28,931</td> <td>9000</td> <td>14,466</td> <td>47.67</td> <td>29.58</td> <td>18.71</td> <td>11.66</td>	20+00.0 P-40	1/P-40:	4.7	1,386,613	200000 P-2	209	3 11,	341 75000 F	P-154 15	5.2	268,462	40000 Low	v Strengt	0	28,931	9000	14,466	47.67	29.58	18.71	11.66
22-030 P-401P-401 47 285.600 20000 P-20 8 14/29 7000 P-161 12 75.84 40001 cos Smmel 0 4.332 9000 7,167 60.44 30.17 11.8 11.8 23-010 P-410P-401 47 344.55 20000 P-20 8 177,47 700 7.167 60.00 13.76 4000 1.66.84 44.14 3.74 15.8 25-010 P-410P-401 47 32.842 20000 P-20 8 15.88 7000 P-141 12 15.86 40001 1.68.42 44.14 28.04 17.8 11.85 2-7010 P-410P-401 47 38.428 20000 P-20 8 15.327 7000 P-141 12 40.53 40001 10.848 42.32 25.66 15.44 42.32 25.66 15.44 42.31 14.14 15.44 14.93 14.93 14.93 14.93 14.93 14.93 14.93	21+00.0 P-40	1/P-40	4.7	437,562	200000 P-2	209	129,	149 75000 F	P-154 15	5.2	29,433	40000 Low	v Strengt	0	33,588	9000	16,794	41.81	25.73	15.02	11.13
23-16 0-4017-42 4.7 297,74 20000 7-209 8 177,34 152 16,84 4000 Low Sterngt 0 38,86 900 19,46 33,72 9000 19,46 33,74 13,14 13,14 15,75 25-46 0 P-4017-44 4.7 25,65 20000 P-209 8 18,858 7500 P-154 15,2 12,66 40000 Low Sterngt 0 31,864 9000 16,824 41,14 24,14 24,14 24,14 24,14 13,14 17,8 11,50 27-49,0 P-4017-44 4.7 38,62 20000 P-209 8 163,727 7500 P-154 15,2 15,81 40000 Low Sterngt 0 31,829 9000 16,86 86,85 23,31 14,09 16,86 14,44 1	22+03.0 P-40	1/P-40	4.7	285,560	200000 P-2	209	3 144,	292 75000 F	P-154 15	5.2	73,280	40000 Low	v Strengt	0	14,333	9000	7,167	50.56	31.77	19.94	44.09
23-86 0-40% 47 244.55 20000 P-269 8 172,64 7500 P-164 15.2 13,766 40001 Low Strengt 0 36,84 9000 15,842 41.4 28.0 14.6 25-04 04 P-04/P-44 4.7 376,653 20000 P-269 8 18,989 7500 P-164 15.2 18,861 9000 15,842 44.1 28.0 17.52 15.5 27-01 04 P-04/P-44 4.7 38,752 7500 P-164 15.2 18,881 40000 Low Strengt 0 31,842 9000 15,846 42.2 26.69 16.3 11.4 8.75.21 7500 P-164 15.2 40,030 Low Strengt 0 33,83 9000 15,866 43.21 24.69 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 10.3 14.48 14.48 10.3 14.48 10.3 14.48 10.3 14.3 14.48 10.3 14.3 14.48 10.3 14.18 14.18 14.3 14.48	23+01.0 P-40	1/P-40	4.7	297,724	200000 P-2	209	3 179.	378 75000 F	P-154 15	5.2	16,844	40000 Low	v Strengt	0	33,322	9000	16,661	46.41	30.03	17.8	11.09
25+40 P-40(P-AC 4.7 427.685 20000 P-209 8 158.66 7500 P-164 15.2 21.680 40000 Los Events 0 31.644 9000 16,022 43.15 25.69 15.5 27.500 P-164 15.2 21.680 40000 Los Events 0 31.644 9000 16,022 43.15 25.69 15.4 14.14 14.44 14.47 15.2 27.500 P-164 15.2 37.73 40000 Los Events 0 31.368 9000 16,168 38.55 23.31 14.69 10.84 14.47 14.47 14.48 14.47 14.47 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.48 14.33 14.48	23+95.0 P-40	1/P-40	4.7	344,535	200000 P-2	209	3 177.	245 75000 F	P-154 15	5.2	48,918	40000 Low	v Strengt	0	38,896	9000	19,448	33.74	21.43	13.14	8.76
26+10 4.17 375,663 20000 P.209 8 15200 P.154 12.2 1680 40000 Lox Streng 0 31,644 9000 15,842 4.14 26.04 17.52 11.61 27-910 P.401/P.441 4.7 328,429 20000 P.209 8 157.27 7500 P.154 15.2 18.61 40000 Lox Streng 0 31.644 9000 15.646 4.232 25.66 15.43 11.61 30-040 P.401/P.441 4.7 379,120 20000 P.209 8 157.27 7500 P.154 15.2 15.47 40000 Lox Streng 0 23.33 9000 15.692 45.71 24.01 14.69 14.79 34.14 24.11 14.69 13.73 31-100 P.410/P.441 4.7 379,120 20000 P.209 8 12.225 7500 P.154 15.2 13.64 9000 14.460 42.45 24.1 19.65 13.13 31-410 P.410/P.411 4.7 32.971 20000 P.209 8 162.25 7500 P.154 15.2 19.62 40000 Lox Streng 0 28.65 9000 14.460 47.6 <td< td=""><td>25+04.0 P-40</td><td>1/P-40</td><td>4.7</td><td>421,685</td><td>200000 P-2</td><td>209</td><td>126,</td><td>957 75000 F</td><td>P-154 15</td><td>5.2</td><td>13,756</td><td>40000 Low</td><td>v Strengt</td><td>0</td><td>27,552</td><td>9000</td><td>13,776</td><td>52.95</td><td>34.5</td><td>21.96</td><td>14.62</td></td<>	25+04.0 P-40	1/P-40	4.7	421,685	200000 P-2	209	126,	957 75000 F	P-154 15	5.2	13,756	40000 Low	v Strengt	0	27,552	9000	13,776	52.95	34.5	21.96	14.62
27.410 P-400 4.7 398.792 200000 P-309 6 18.172 75000 P-154 15.2 31.79 P-400+P-40 4.7 384.29 200000 P-309 8 15.521 75000 P-154 15.2 31.79 P-400+P-40 4.7 384.299 200000 P-309 8 15.521 75000 P-154 15.2 40.538 40000 Low Sing 0 32.365 9000 15.692 47.1 45.61 <t< td=""><td>26+11.0 P-40⁻</td><td>1/P-40</td><td>4.7</td><td>379,663</td><td>200000 P-2</td><td>209</td><td>159,</td><td>396 75000 F</td><td>P-154 15</td><td>5.2</td><td>21,660</td><td>40000 Low</td><td>v Strengt</td><td>0</td><td>31,684</td><td>9000</td><td>15,842</td><td>44.14</td><td>28.04</td><td>17.52</td><td>11.51</td></t<>	26+11.0 P-40 ⁻	1/P-40	4.7	379,663	200000 P-2	209	159,	396 75000 F	P-154 15	5.2	21,660	40000 Low	v Strengt	0	31,684	9000	15,842	44.14	28.04	17.52	11.51
27-960 P-401P-40C 47 328/299 200000 P-208 8 15,274 75000 P-154 15.2 37,729 40000 Low Smang 0 31,832 9000 15,846 42.22 25.69 15.43 114.69 103 29-070 P-401P-40C 47 456,189 200000 P-208 8 24,275 75000 P-154 15.2 65,613 40000 Low Smang 0 31,832 9000 15,692 45,71 24,011 14,860 103 14,90 14,40 44,41 14,41 14,415 14,41 14,416 103 14,400 14,400 44,40 44,40 44,44 24,41 14,460 44,44 14,40 44,44 44,44 14,41 14,41 14,41 14,41 14,400 14,43 14,43 14,41	27+01.0 P-40	1/P-40;	4.7	398,792	200000 P-	209	3 181.	772 75000 F	P-154 15	5.2	18,891	40000 Low	v Strenat	0	32,184	9000	16.092	43.15	28.59	17.6	11.86
28-07.0 24-07.0 8 157.57 175.00 P15.4 15.2 45.38 40000 Law Strengt 0 31.383 9000 16.188 38.68 23.31 14.80 108.3 31-10.0 P401P-440 47 455.18 20000 P.209 8 224.783 75000 P.154 15.2 15.47 40000 Law Strengt 0 28.920 9000 14.460 42.45 23.1 14.80 16.83 34.31 24.77 13.83 9000 14.460 42.45 23.1 14.80 16.82 13.83 9000 14.460 42.45 23.1 14.80 18.62 13.13 43.00 14.01 44.01	27+99.0 P-40	1/P-40;	4.7	328,429	200000 P-	209	153.	274 75000 F	P-154 15	5.2	31,729	40000 Low	v Strenat	0	31.692	9000	15.846	42.32	25.69	15.43	11.14
30-04 0.P-401(P-40: 4.7 378;120 20000 P-209 8 62,233 7500 P-164 15.2 65,133 4000 Low Steng 0 23,331 9000 14,60 42,71 24,01 148,5 103 7 31-10 P-401(P-40: 4.7 377,539 20000 P-209 8 219,293 7500 P-154 15.2 15,764 4000 Low Steng 0 28,830 9000 14,460 42,45 29,1 18,68 13,33 32-03 D-410/P-40: 4.7 327,915 20000 P-209 8 196,270 7500 P-154 15.2 13,782 40000 Low Steng 0 28,830 9000 14,460 43,56 29,41 18,68 13,37 34-01 D-401/P-40: 4.7 328,791 20000 P-209 8 168,013 7500 P-154 15.2 13,472 4000 Low Steng 0 29,411 9000 14,768 43,58 94,24 7,66 43,51 34,51 14,82 4000 Low Steng 0 29,411 9000 14,768 44,90 14,83 40,92 18,85 14,83 13,35 15,42 13,37 15,42	29+07.0 P-40	1/P-40;	4.7	384,299	200000 P-	209	3 157.	521 75000 F	P-154 15	5.2	40.538	40000 Low	v Strenat	0	32.336	9000	16,168	38.65	23.31	14.69	10.89
31+100 P-401/P-402 47 465,189 200000 P-208 8 224,783 75000 P-154 15.2 15.47 40000 Low Streng 0 284,900 9000 14,460 42.44 2317 18.02 33+130 P-401/P-402 47 337,530 200000 P-209 8 198,270 75000 P-154 15.2 16,763 40000 Low Streng 0 28,905 9000 14,466 42.45 29.1 18.02 20,805 9000 14,466 42.45 29.1 18.02 18.13 33-43.0 P-401/P-402 47 324,910 P401/P-404 47 324,840 200000 P-209 8 162,421 15001 P-154 15.2 12,423 40000 Low Streng 0 24,541 9000 14,766 47.5 30.81 17.755 13.86 34+610 P-401/P+402 47 314,829 200000 P-208 8 166,812 75000 P-154 15.2 12,823 40000 Low Streng 0 24,511 9000 14,768 43.44 27.76 16.83 92.44 27.76 16.83 92.44 14,713 33.23 16.99 92.450 9000 1	30+04.0 P-40	1/P-40;	4.7	379,120	200000 P-	209	62.	335 75000 F	P-154 15	5.2	65.133	40000 Low	v Strenal	0	31.383	9000	15.692	45.71	24.01	14.85	10.37
31+130 P-40(P-40) 4.7 439,851 200000 P-209 8 192,299 75000 P-154 15.2 18,738 40000 Low Strengt 0 28,900 9000 14,465 42,45 791 196.8 32+00 D P-401(P-40) 4.7 329,791 200000 P-209 8 192,257 75000 P-154 15.2 19,782 40000 Low Strengt 0 28,905 9000 14,465 43.66 24.17 30.2 20.06 5000 11,203 50.69 32.2 20.06 13,133 34+010 P-401(P+40) 4.7 324,920 20000 P-209 8 162,217 75000 P-154 15.2 18,74 40000 Low Strengt 0 24,151 9000 12,26 30,600 12,28 44,49 27,76 18,35 19,24 35+00 D-401/P+40 4.7 49,965 200000 P-209 8 768,00 15,2 18,77 40000 Low Strengt 0 32,750 9000 12,28 44,49 27,76 18,35 34,90 24,151 33,760 14,460 42,4 42,172 12,12 13,73 34,010 P-40,10P-40 47 32,	31+10.0 P-40	1/P-40;	4.7	465,189	200000 P-	209	3 224.	783 75000 F	P-154 15	5.2	15.447	40000 Low	v Strenal	οΓ	29.418	9000	14,709	43.41	29.17	18.02	13.19
32-030 P-401P-40: 47 377539 20000 P-209 8 195270 75000 P-154 15.2 19782 40000 Low Streng 0 28.930 9000 14.465 45.86 22.47 18.5 12.13 33-03.0 P-401P-40: 47 329.791 20000 P-209 8 152.25 75000 P-154 15.2 19.482 40000 Low Streng 0 22.466 9000 11.203 50.60 22.2 19.81 21.96 34-05 P-401P-40: 47 344.90 20.000 P-209 8 16.013 75000 P-154 15.2 18.83 40000 Low Streng 0 29.411 9000 14.705 47.55 13.85 35-00 P-401P-40: 47 402.922 20.000 P-209 8 167.821 75000 P-154 15.2 18.87 40000 Low Streng 0 33.705 9000 16.853 44.47 32.3 16.59 92.47 18.5 18.73 4000 Low Streng 0 33.705 9000 16.853 44.97 21.12 13.87 40000 Low Streng 0 23.165 9000 11.203 56.95 93.92 24.02	31+13.0 P-40	1/P-40;	4.7	439.851	200000 P-	209	<u>219.</u>	299 75000 F	P-154 15	5.2	16.736	40000 Low	v Strenal	0	28.920	9000	14.460	42.45	29.1	19.68	13.35
33-030 P-401P-40: 4.7 329,791 20000 P-209 8 172,252 75000 P-154 15.2 20,83 40000 Low Streng 0 25,905 9000 13,453 47.2 30.2 20.08 13.93 34-010 P-401P-40: 4.7 324,800 200000 P-209 8 161,432 75000 P-154 15.2 18,23 40000 Low Streng 0 22,406 9000 14,203 60.69 32,28 18,35 19,24 35+00.0 P-401P-40: 4.7 409,985 200000 P-209 8 166,913 75000 P-154 15.2 18,37 40000 Low Streng 0 24,591 9000 18,303 56.11 34.72 21.2 18,35 19,24 35+010 P-401P-40: 4.7 588,188 200000 P-209 8 67,807 75000 P-154 15.2 16,878 40000 Low Streng 0 23,156 9000 14,725 54,47 30.76 26,411 30.75 56,56 39,19 24,02 15,43 37-010 P-401P-40: 4.7 538,186 200000 P-209 8 152,447 7500 P-154 15.2 12,678	32+09.0 P-40	1/P-40;	4.7	377.539	200000 P-	209	3 <u>196</u> .	270 75000 F	P-154 15	5.2	19.782	40000 Low	v Strenal	0	28.930	9000	14.465	43.56	29.47	18.5	12.13
34-010 P-401P-40: 47 314,929 200000 P-209 8 161,432 75000 P-154 15.2 19,862 40000 Low Strengt 0 22,408 9000 11,203 50,68 32,228 19,81 21,965 34+050 P-401P-40: 47 419,966 20000 P-209 8 164,912 75000 P-154 15.2 18,233 40000 Low Strengt 0 24,591 9000 16,283 44,77 33,23 16,59 9.92 36+010 P-401P-40: 47 402,712 200000 P-209 8 175,800 P-154 15.2 10,877 40000 Low Strengt 0 32,705 9000 16,83 44,77 33,23 16,59 9.92 37-010 P-401P-40: 47 83,816 200000 P-209 8 52,864 75000 P-154 15.2 17,962 40000 Low Strengt 0 23,456 9000 11,778 57,65 39,19 24,02 15,43 39+03.0 P-401P-40: 47 53,784 200000 P-209 8 152,047 75000 P-154 15.2 17,962 40000 Low Strengt 0 23,453 9000	33+03.0 P-40	1/P-40;	4.7	329,791	200000 P-	209	3 172.	525 75000 F	P-154 15	5.2	20.263	40000 Low	v Strenal	0	26.905	9000	13.453	47.2	30.2	20.08	13.37
34+05.0 P4011P-400 4.7 314,029 200000 P.209 8 161,432 75000 P.164 15.2 18,233 40000 Low Streng 0 29,411 9000 14,706 47,755 30,81 17,55 13,85 35+00.0 P-4011P-400 4.7 402,712 200000 P.209 8 176,821 75000 P.154 15.2 21,877 40000 Low Streng 0 23,050 9000 12,96 44,49 27,76 18.38 16.9 992 36+01.0 P-4011P-400 4.7 522,83 200000 P.209 8 57,800 P.154 15.2 12,678 40000 Low Streng 0 24,850 9000 14,726 44,74 31,71 19,01 12,04 15,33 39+03.0 P-401P-400 4.7 513,784 20000 P.09 8 12,247 75000 P.154 15.2 17,62 40000 Low Streng 0 24,850 9000 14,725 44,74 31,71 15,01 14,149 47,74 15,63 34,91	34+01.0 P-40	1/P-40;	4.7	324.640	200000 P-	209	3 182.)41 75000 F	P-154 15	5.2	19.462	40000 Low	v Strenal	0	22.406	9000	11.203	50.69	32.26	19.81	21.96
35+00.0 P.401/P-40: 4.7 409.985 200000 P.209 8 169.013 75000 P-154 15.2 28.377 40000 Low Strengt 0 24.591 9000 12.296 44.49 27.76 18.35 19.24 36+01.0 P-401/P-40: 4.7 425,212 200000 P-209 8 67.860 75000 P-154 15.2 10.058 40000 Low Strengt 0 23.166 9000 11.578 57.65 39.19 24.02 15.43 38+01.0 P-401/P-40: 4.7 332,903 200000 P-209 8 190.566 75000 P-154 15.2 12.678 40000 Low Strengt 0 24.850 9000 14.725 51.88 35.49 23.24 15.7 40+04 0 P-401/P-40: 4.7 513.784 200000 P-209 8 152.047 75000 P-154 15.2 17.962 40000 Low Strengt 0 24.850 9000 14.725 51.88 31.935 12.28 42.411 90.01 14.725 51.83 36.69 12.23 14.69 47.11 31.56	34+05.0 P-40	1/P-40;	4.7	314.929	200000 P-	209	3 161.	132 75000 F	P-154 15	5.2	18.233	40000 Low	v Strenal	0	29.411	9000	14,706	47.55	30.81	17.55	13.85
35+03.0 P.401/P-40: 4.7 402,712 200000 P.209 8 176,821 75000 P.154 152 13,877 40000 Low Strengi 0 33,705 9000 16,853 44,77 33,23 16,59 9.922 36+01.0 P.401/P-40: 4.7 528,238 200000 P.209 8 67,860 75000 P.154 152 16,873 40000 Low Strengi 0 22,156 9000 11,578 57.65 33,19 24.02 15.43 39+01.0 P.401/P-40: 4.7 513,87 40000 Low Strengi 0 22,156 9000 11,578 57.65 33,19 24.02 15.43 43.47 33.41 75.017 13.03 51.78 40.47 31.78 40000 Low Strengi 0 23,156 9000 14.25 54.47 33.41 15.5 12.41 15.6 14.00 Low Strengi 0 23,579 9000 12.899 54.22 37.65 24.61 20.63 41-04.0 P.401/P-401/P-40: 4.7 431.64 75000 P.1	35+00.0 P-40	1/P-40;	4.7	409,985	200000 P-	209	169.)13 75000 F	P-154 15	5.2	28.377	40000 Low	v Strengt	0	24.591	9000	12.296	44.49	27.76	18.35	19.24
38-010 P-401/P-401 4.7 525,238 200000 P-209 8 67.800 75000 P-154 15.2 20,058 40000 Low Strengt 0 26,206 9000 13,103 56.11 34.72 21.12 13.87 37-01.0 P-401/P-401 4.7 838,166 200000 P-209 8 52,864 75000 P-154 15.2 16,878 40000 Low Strengt 0 24,850 9000 14,725 54,84 35.49 23.24 15.7. 39-03.0 P-401/P-401 4.7 738,74 200000 P-209 8 152,047 75000 P-154 15.2 7,916 40000 Low Strengt 0 25,797 9000 12,899 54.22 34.53 15.2 24.61 20.828 9000 14,459 44.53 34.53 15.2 24.61 20.828 9000 14,459 47.1 31.66 19.4 13.01 13.01 44.61 20.628 9000 14.459 44.53 34.53 15.2 16.872 40000 Low Strengt 0 28.618 9000	35+03.0 P-40	1/P-40;	4.7	402,712	200000 P-	209	3 176.	321 75000 F	P-154 15	5.2	13.877	40000 Low	v Strengt	0	33,705	9000	16.853	44.77	33.23	16.59	9.92
37-01.0 P-401/P-40: 4.7 838,186 200000 P-209 8 52,864 75000 P-154 15.2 16,878 40000 Low Strengt 0 23,156 9000 11,578 57,65 39,19 24,02 15,43 39+03.0 P-401/P-40: 4.7 513,784 200000 P-209 8 190,566 75000 P-154 15.2 12,678 40000 Low Strengt 0 24,850 9000 12,425 51,98 35,49 23,24 15,77 40+04.0 P-401/P-40: 4.7 340,161 200000 P-209 8 32,784 75000 P-154 15.2 7,916 40000 Low Strengt 0 25,797 9000 12,899 54.22 37,65 24,61 20,63 42+01.0 P-401/P-40: 4.7 439,165 200000 P-209 8 39,673 75000 P-154 15.2 13,479 40000 Low Strengt 28,818 9000 14,459 47,71 31,56 19,41 4000 40,417-40: 44,77 31,56 19,41 16,472 44,41 47,71 31,56 15,45 36,06	36+01 0 P-40	1/P-40:	4 7	525 238	200000 P-	209	67 67	380 75000 F	P-154 15	52	20.058	40000 Low	v Strengt	0	26,206	9000	13 103	56 11	34 72	21 12	13.87
38+01.0 P-401/P-40: 4.7 322,903 200000 P-209 8 190,566 75000 P-154 152 12,678 40000 Low Strengt 0 24,850 9000 12,425 51,98 35,49 23,24 157. 39+03.0 P-401/P-40: 4.7 513,784 200000 P-209 8 152,447 7500 P-154 152 7,962 40000 Low Strengt 0 29,450 9000 14,725 44,74 30,17 19,01 12,55 24,61 20,63 41,74 411,042 200000 P-209 8 32,784 75000 P-154 152 79,602 40000 Low Strengt 0 23,628 9000 14,459 47,71 31,66 19,4 13,01 13,01 14,01 14,01 4,000 P-401/P-40: 4,7 39,616 200,000 P-401/P-40: 4,7 49,66 200,000 P-209 8 165,731 75000 P-154 152 11,849 40000 Low Strengt 0 23,772 9000 11,843 43,04 2,752 17,33	37+01.0 P-40	1/P-40;	4.7	838,186	200000 P-	209	52.	364 75000 F	P-154 15	5.2	16.878	40000 Low	v Strengt	0	23,156	9000	11.578	57.65	39.19	24.02	15.43
39-03.0 P-401/P-40: 4.7 513,784 200000 P-209 8 152,047 75000 P-154 15.2 7,962 40000 Low Strengt 0 29,450 9000 14,725 44,74 30.17 19.01 12.5 40+04.0 P-401/P-40: 4.7 380,161 200000 P-209 8 32,784 75000 P-154 15.2 7,916 40000 Low Strengt 0 23,628 9000 114,459 47.71 31,56 19.4 13.01	38+01.0 P-40	1/P-40;	4.7	322,903	200000 P-	209	3 190.	566 75000 F	P-154 15	5.2	12.678	40000 Low	v Strengt	0	24.850	9000	12.425	51.98	35.49	23.24	15.7
40+04.0 P-401/P-40: 4.7 380,161 200000 P-209 8 203,364 75000 P-154 152 7,916 40000 Low Strengt 0 25,797 9000 12,899 54,22 37,65 24,61 20.63 41-04.0 P-401/P-40: 4.7 319,712 200000 P-209 8 32,786 75000 P-154 152 16,722 40000 Low Strengt 0 28,628 9000 14,459 47.71 31,56 19,4 13,01 42+00.0 P-401/P-40: 4.7 319,161 200000 P-209 8 159,669 75000 P-154 152 13,479 40000 Low Strengt 0 23,772 9000 14,826 54,33 6.06 2.71,7 16,49 23,324 45+10.0 P-401/P-40: 4.7 256,862 200000 P-209 8 165,731 75000 P-154 152 14,169 40000 Low Strengt 0 23,772 9000 11,384 44.08 27,91 16,49 23,23 17,31 17,72 46+010	39+03.0 P-40	1/P-40;	4.7	513,784	200000 P-	209	152.)47 75000 F	P-154 15	5.2	17.962	40000 Low	v Strengt	0	29.450	9000	14,725	44.74	30.17	19.01	12.5
41+04.0 P-401/P-40: 4.7 411,042 200000 P-209 8 32,784 75000 P-154 152 79,602 40000 Low Strengl 0 23,628 9000 11,814 54.32 34.53 19,35 12,28 42+01.0 P-401/P-40: 4.7 379,712 200000 P-209 8 195,669 75000 P-154 152 13,479 40000 Low Strengl 0 28,411 9000 14,459 4.7.1 31,56 11,51 13,06 44+00.0 P-401/P-40: 4.7 499,65 200000 P-209 8 195,659 75000 P-154 152 11,479 40000 Low Strengl 0 28,411 9000 14,459 4.7.1 31,66 21,75 13,06 44+00.0 P-401/P-40: 4.7 456,682 200000 P-209 8 195,584 75000 P-154 152 11,684 40000 Low Strengl 0 22,686 9000 11,343 44.08 27.91 16.49 23.23 45+100 P-401/P-40: 4.7 34,9475 200000 P-209 8 39,333	40+04.0 P-40	1/P-40;	4.7	380,161	200000 P-	209	3 203.	364 75000 F	P-154 15	5.2	7.916	40000 Low	v Strengt	0	25.797	9000	12.899	54.22	37.65	24.61	20.63
42+01.0 P-401/P-40: 4.7 379,712 200000 P-209 8 159,569 75000 P-154 152 16,722 40000 Low Strengt 0 28,918 9000 14,459 47.71 31.56 194 13.01 43+00.0 P-401/P-40: 4.7 499,165 200000 P-209 8 98,673 75000 P-154 15.2 13,479 40000 Low Strengt 0 28,411 9000 14,459 47.71 31.56 194 13.01 45+06.0 P-401/P-40: 4.7 856,273 200000 P-209 8 165,673 75000 P-154 15.2 13,160 40000 Low Strengt 0 23,772 9000 11,886 52,84 37.81 25,11 16,69 45+06.0 P-401/P-40: 4.7 29,662 200000 P-209 8 197,584 75000 P-154 15.2 19,141 40000 Low Strengt 0 22,686 9000 11,343 44.80 29,11 16,49 23,27 17,31 45+10.0 P-401/P-40: 4.7 28,4975 200000 P-209 8 23,33 75000 P-154 15.2 14,550 40000 Low Strengt 0 30,830	41+04.0 P-40	1/P-40;	4.7	411.042	200000 P-	209	32.	784 75000 F	P-154 15	5.2	79.602	40000 Low	v Strengt	0	23.628	9000	11.814	54.32	34.53	19.35	12.28
43+00.0 P-401/P-40: 4.7 499,165 200000 P-209 8 98,673 75000 P-154 15.2 13,479 40000 Low Strengt 0 23,772 9000 14,206 54.35 36.06 21.75 13.06 44+00.0 P-401/P-40: 4.7 855,273 200000 P-209 8 105,669 75000 P-154 15.2 11,689 40000 Low Strengt 0 23,772 9000 11,886 52.84 37.81 25.11 16.69 45+06.0 P-401/P-40: 4.7 26,862 200000 P-209 8 195,584 75000 P-154 15.2 19,141 40000 Low Strengt 0 22,686 9000 11,343 44.08 27.91 16.49 23.27 45+010 P-401/P-40: 4.7 284,975 200000 P-209 8 39.33 75000 P-154 15.2 163,455 40000 Low Strengt 0 30,830 9000 15,415 44.71 25.72 14.35 10.26 47+03.0 P-401/P-40: 4.7 394,976 200000 P-209 8 13.02 75000 P-154 15.2 163,455 40000 Low Strengt 0 27,350 9000	42+01.0 P-40	1/P-40;	4.7	379.712	200000 P-	209	159.	569 75000 F	P-154 15	5.2	16,722	40000 Low	v Strengt	0	28.918	9000	14,459	47.71	31.56	19.4	13.01
44+00.0 P-401/P-40: 4.7 855,273 20000 P-209 8 105,669 7500 P-154 15.2 11,689 40000 Low Strengt 0 23,772 9000 11,846 52.84 37.81 25.11 16.69 45+06.0 P-401/P-40: 4.7 296,862 200000 P-209 8 197,584 7500 P-154 15.2 19,141 40000 Low Strengt 0 22,686 9000 11,343 44.08 27.52 17.33 11.72 46+01.0 P-401/P-40: 4.7 452,684 200000 P-209 8 29,055 9000 14,533 43.34 27.52 17.33 11.72 46+01.0 P-401/P-40: 4.7 394,796 200000 P-209 8 39,333 75000 P-154 15.2 14,550 40000 Low Strengt 0 22,790 9000 13,675 66.04 46.2 26.57 16.88 47+03.0 P-401/P-40: 4.7 30,839 20000 P-209 8 130,72 75000 P-154 15.2 6,932 40000 Low Strengt 0 20,205 9000 13,675 66.04 46.2 26.57 16.88 49+05.0 P-40	43+00 0 P-40	1/P-40:	4 7	499 165	200000 P-	209	98 · · · · ·	573 75000 F	P-154 15	52	13 479	40000 Low	v Strengt	0	28 411	9000	14 206	54 35	36.06	21 75	13.06
45+06.0 P-401/P-40: 4.7 296,862 20000 P-209 8 165,731 7500 P-154 15.2 43,160 40000 Low Strengi 0 22,886 9000 11,343 44.08 27.91 16.49 23.23 45+10.0 P-401/P-40: 4.7 452,684 20000 P-209 8 197,584 75000 P-154 15.2 19,141 40000 Low Strengi 0 22,790 9000 11,343 43.06 23.27 17.31 46+01.0 P-401/P-40: 4.7 284,975 200000 P-209 8 39,333 75000 P-154 15.2 143,455 40000 Low Strengi 0 22,790 9000 11,343 44.08 23.27 17.31 47+03.0 P-401/P-40: 4.7 394,796 200000 P-209 8 39,333 75000 P-154 15.2 163,455 40000 Low Strengi 0 20,350 9000 15,415 44.71 25.72 14.35 10.28 48+06.0 P-401/P-40: 4.7 300,839 200000 P-209 8 183,045 75000 P-154 15.2 4,579 40000 Low Strengi 0 20,205 9000 10,103 69,64 <td>44+00 0 P-40</td> <td>1/P-40:</td> <td>4 7</td> <td>855 273</td> <td>200000 P-</td> <td>209</td> <td>105</td> <td>69 75000 F</td> <td>P-154 15</td> <td>52</td> <td>11 689</td> <td>40000 Low</td> <td>v Strengt</td> <td>0</td> <td>23 772</td> <td>9000</td> <td>11 886</td> <td>52 84</td> <td>37 81</td> <td>25 11</td> <td>16.69</td>	44+00 0 P-40	1/P-40:	4 7	855 273	200000 P-	209	105	69 75000 F	P-154 15	52	11 689	40000 Low	v Strengt	0	23 772	9000	11 886	52 84	37 81	25 11	16.69
45+10.0 P-401/P-40: 4.7 452,684 200000 P-209 8 197,584 75000 P-154 15.2 19,141 40000 Low Strengt 0 22,790 9000 11,395 51.26 34.96 23.27 17.31 47+03.0 P-401/P-40: 4.7 394,796 200000 P-209 8 39,333 75000 P-154 15.2 14,550 40000 Low Strengt 0 30,830 9000 15,415 44.71 25.72 14.35 10.28 48+06.0 P-401/P-40: 4.7 300,839 200000 P-209 8 120,262 75000 P-154 15.2 6,932 40000 Low Strengt 0 27,350 9000 13,675 66.04 46.2 26.57 16.98 49+05.0 P-401/P-40: 4.7 120,329 200000 P-209 8 13,072 75000 P-154 15.2 3,7533 40000 Low Strengt 0 13,951 9000 6,976 129 59,76 35.31 19,94 50+04.0 P-401/P-40: 4.7	45+06.0 P-40	1/P-40;	4.7	296.862	200000 P-	209	165. [°]	731 75000 F	P-154 15	5.2	43,160	40000 Low	v Strengt	0	22.686	9000	11.343	44.08	27.91	16.49	23.23
46+01.0 P-401/P-40: 4.7 284,975 200000 P-209 8 220,325 75000 P-154 15.2 14,550 40000 Low Strengt 0 22,790 9000 11,395 51.26 34.96 23.27 17.31 47+03.0 P-401/P-40: 4.7 394,796 200000 P-209 8 39,333 75000 P-154 15.2 163,455 40000 Low Strengt 0 22,790 9000 15,415 44.71 25.72 14.35 10.28 48+06.0 P-401/P-40: 4.7 300,839 200000 P-209 8 120,262 75000 P-154 15.2 6,932 40000 Low Strengt 0 27,350 9000 13,075 66.04 46.2 26.57 16.98 49+05.0 P-401/P-40: 4.7 120,329 200000 P-209 8 13,072 75000 P-154 15.2 37,533 40000 Low Strengt 0 13,951 9000 6,976 129 59,76 35.31 19,94 50+04.0 P-401/P-40: 4.7 114,732 200000 P-209 8 66,063 75000 P-154 15.2 27,533 40000 Low Strengt 0 13,098 9000	45+10.0 P-40	1/P-40:	4 7	452 684	200000 P-	209	197	584 75000 F	P-154 15	52	19 141	40000 Low	v Strengt	0	29,065	9000	14 533	43 34	27 52	17 33	11 72
47+03.0 P-401/P-40: 4.7 394,796 200000 P-209 8 39,333 75000 P-154 15.2 163,455 40000 Low Strengt 0 30,830 9000 15,415 44.71 25.72 14.35 10.28 48+06.0 P-401/P-40: 4.7 300,839 200000 P-209 8 120,262 75000 P-154 15.2 6,932 40000 Low Strengt 0 27,350 9000 13,675 66.04 46.2 26.57 16.98 49+05.0 P-401/P-40: 4.7 120,329 200000 P-209 8 183,045 75000 P-154 15.2 4,579 40000 Low Strengt 0 20,205 9000 10,103 69.64 49.6 31.67 31.35 50+04.0 P-401/P-40: 4.7 14,732 200000 P-209 8 66,063 75000 P-154 15.2 27,039 40000 Low Strengt 0 13,098 9000 6,549 83.64 60.11 36.45 24.16 51+08.0 P-401/P-40: 4.7	46+01 0 P-40	1/P-40:	4 7	284 975	200000 P-	209	220	325 75000 F	P-154 15	52	14 550	40000 Low	v Strengt	0	22 790	9000	11 395	51 26	34.96	23 27	17 31
Harder Harter	47+03 0 P-40	1/P-40:	4 7	394 796	200000 P-	209	39	333 75000 F	P-154 15	52	163 455	40000 Low	v Strengt	0	30,830	9000	15 415	44 71	25 72	14 35	10.28
49+05.0 P-401/P-40: 4.7 322,631 200000 P-209 8 183,045 75000 P-154 15.2 4,579 40000 Low Strengt 0 20,205 9000 10,103 69.64 49.6 31.67 31.35 50+04.0 P-401/P-40: 4.7 120,329 200000 P-209 8 13,072 75000 P-154 15.2 37,533 40000 Low Strengt 0 13,951 9000 6,976 129 59.76 35.31 19.94 50+10.0 P-401/P-40: 4.7 114,732 200000 P-209 8 66,063 75000 P-154 15.2 22,039 40000 Low Strengt 0 13,098 9000 6,549 83.64 60.11 36.45 24.16 51+08.0 P-401/P-40: 4.7 405,418 200000 P-209 8 302,280 75000 P-154 15.2 8,979 40000 Low Strengt 0 20,586 9000 10,293 54.62 36.97 24.01 28.68 51+14.0 P-401/P-40: 4.7	48+06.0 P-40	1/P-40;	4.7	300.839	200000 P-	209	120.	262 75000 F	P-154 15	5.2	6.932	40000 Low	v Strengt	0	27.350	9000	13.675	66.04	46.2	26.57	16.98
50+04.0 P-401/P-40; 4.7 120,329 200000 P-209 8 13,072 75000 P-154 15.2 37,533 40000 Low Strengt 0 13,951 9000 6,976 129 59,76 35.31 19.94 50+10.0 P-401/P-40; 4.7 114,732 200000 P-209 8 66,063 75000 P-154 15.2 22,039 40000 Low Strengt 0 13,098 9000 6,549 83.64 60.11 36.45 24.16 51+08.0 P-401/P-40; 4.7 405,418 200000 P-209 8 302,280 75000 P-154 15.2 8,979 40000 Low Strengt 0 20,586 9000 10,293 54.62 36.97 24.01 28.68 51+14.0 P-401/P-40; 4.7 405,418 200000 P-209 8 122,589 75000 P-154 15.2 17,014 40000 Low Strengt 0 22,350 9000 11,175 54.19 35.38 23.71 16.09 52+05.0 P-401/P-40; 4.7	49+05.0 P-40	1/P-40;	4.7	322,631	200000 P-	209	183.)45 75000 F	P-154 15	5.2	4,579	40000 Low	v Strengt	0	20,205	9000	10,103	69.64	49.6	31.67	31.35
50+10.0 P-401/P-40'. 4.7 114,732 200000 P-209 8 66,063 75000 P-154 15.2 22,039 40000 Low Strengt 0 13,098 9000 6,549 83.64 60.11 36.45 24.16 51+08.0 P-401/P-40'. 4.7 290,307 200000 P-209 8 302,280 75000 P-154 15.2 8,979 40000 Low Strengt 0 20,586 9000 10,293 54.62 36.97 24.01 28.68 51+14.0 P-401/P-40'. 4.7 405,418 200000 P-209 8 122,589 75000 P-154 15.2 17,014 40000 Low Strengt 0 22,350 9000 11,175 54.19 35.38 23.71 16.09 52+05.0 P-401/P-40'. 4.7 394,074 200000 P-209 8 207,122 75000 P-154 15.2 3,478 40000 Low Strengt 0 32,270 9000 16,135 63.77 43.47 25.6 34.06 52+12.0 P-401/P-40'. 4	50+04.0 P-40	1/P-40;	4.7	120.329	200000 P-	209	3 13.)72 75000 F	P-154 15	5.2	37,533	40000 Low	v Strengt	οΓ	13,951	9000	6.976	129	59.76	35.31	19.94
51+08.0 P-401/P-40; 4.7 290,307 200000 P-209 8 302,280 75000 P-154 15.2 8,979 40000 Low Strengt 0 20,586 9000 10,293 54.62 36.97 24.01 28.68 51+14.0 P-401/P-40; 4.7 405,418 200000 P-209 8 122,589 75000 P-154 15.2 17,014 40000 Low Strengt 0 22,350 9000 11,175 54.19 35.38 23.71 16.09 52+05.0 P-401/P-40; 4.7 394,074 200000 P-209 8 207,122 75000 P-154 15.2 3,478 40000 Low Strengt 0 32,270 9000 16,135 63.77 43.47 25.6 34.06 52+12.0 P-401/P-40; 4.7 1,140,775 200000 P-209 8 13,585 75000 P-154 15.2 3,654 40000 Low Strengt 0 23,636 9000 11,818 64.9 44.95 25.3 15.64 53+09.0 P-401/P-40; 4.7 <td>50+10.0 P-40</td> <td>1/P-40:</td> <td>4 7</td> <td>114,732</td> <td>200000 P-</td> <td>209</td> <td>3 66</td> <td>)63 75000 F</td> <td>P-154 15</td> <td>5.2</td> <td>22.039</td> <td>40000 L ov</td> <td>v Strengt</td> <td>°∟ 0</td> <td>13.098</td> <td>9000</td> <td>6.549</td> <td>83 64</td> <td>60 11</td> <td>36.45</td> <td>24 16</td>	50+10.0 P-40	1/P-40:	4 7	114,732	200000 P-	209	3 66)63 75000 F	P-154 15	5.2	22.039	40000 L ov	v Strengt	°∟ 0	13.098	9000	6.549	83 64	60 11	36.45	24 16
51+14.0 P-401/P-40(4.7 405,418 200000 P-209 8 122,589 75000 P-154 15.2 17,014 40000 Low Strengt 0 22,350 9000 11,175 54.19 35.38 23.71 16.09 52+05.0 P-401/P-40(4.7 394,074 200000 P-209 8 207,122 75000 P-154 15.2 3,478 40000 Low Strengt 0 32,270 9000 16,135 63.77 43.47 25.6 34.06 52+12.0 P-401/P-40(4.7 1,140,775 200000 P-209 8 13,585 75000 P-154 15.2 20,059 40000 Low Strengt 0 23,636 9000 11,818 64.9 44.95 25.3 15.4 53+09.0 P-401/P-40(4.7 260,804 200000 P-209 8 141,172 75000 P-154 15.2 3,654 40000 Low Strengt 0 24,833 9000 12,417 78.63 53.8 32,64 31.51	51+08.0 P-40	1/P-40:	4 7	290,307	200000 P-	209	302	280 75000 F	P-154 15	5.2	8,979	40000 Low	v Strengt	0 0	20,586	9000	10,293	54 62	36.97	24.01	28 68
52+05.0 P-401/P-40; 4.7 394,074 200000 P-209 8 207,122 75000 P-154 15.2 3,478 40000 Low Strengt 0 32,270 9000 16,135 63.77 43.47 25.6 34.06 52+12.0 P-401/P-40; 4.7 1,140,775 200000 P-209 8 13,585 75000 P-154 15.2 20,059 40000 Low Strengt 0 23,636 9000 11,818 64.9 44.95 25.3 15.64 53+09.0 P-401/P-40; 4.7 260,804 200000 P-209 8 141.172 75000 P-154 15.2 3,654 40000 Low Strengt 0 24.833 9000 12.417 78.63 53.8 32.64 31.51	51+14.0 P-40	1/P-40:	4.7	405.418	200000 P-	209	122	589 75000 F	P-154 15	5.2	17.014	40000 Low	v Strenat	0	22,350	9000	11.175	54.19	35.38	23.71	16.09
52+12.0 P-401/P-40; 4.7 1,140,775 200000 P-209 8 13,585 75000 P-154 15.2 20,059 40000 Low Strengt 0 23,636 9000 11,818 64.9 44.95 25.3 15.4 53+09.0 P-401/P-40; 4.7 260,804 200000 P-209 8 141,172 75000 P-154 15.2 3,654 40000 Low Strengt 0 24.833 9000 12.417 78.63 53.8 32.64 31.51	52+05.0 P-40	1/P-40:	4.7	394.074	200000 P-	209	3 207.	122 75000 F	P-154 15	5.2	3.478	40000 Low	v Strenat	0	32.270	9000	16.135	63.77	43.47	25.6	34.06
53+09.0 P-401/P-40; 4.7 260.804 200000 P-209 8 141.172 75000 P-154 15.2 3.654 40000 Low Strengt 0 24.833 9000 12.417 78.63 53.8 32.64 31.51	52+12.0 P-40	1/P-40:	4.7	1,140.775	200000 P-	209	3 13.	585 75000 F	P-154 15	5.2	20,059	40000 Low	v Strenal	0	23,636	9000	11.818	64.9	44.95	25.3	15.64
	53+09.0 P-40	1/P-40	4.7	260,804	200000 P-	209	3 141.	172 75000 F	P-154 15	5.2	3,654	40000 Low	v Strengt	0	24,833	9000	12,417	78.63	53.8	32.64	31.51

54+01.0 P-401/P-40	4.7	372,584	200000 P-209	8	59,736	75000 P-154	15.2	57,644	40000 Low Strengt	0	23,198	9000	11,599	49.85	32.36	19.63	13
54+99.0 P-401/P-40	4.7	461,205	200000 P-209	8	234,072	75000 P-154	15.2	14,429	40000 Low Strengt	0	29,154	9000	14,577	44.24	29.81	18.5	11.91
55+99.0 P-401/P-40	4.7	374,248	200000 P-209	8	147,983	75000 P-154	15.2	32,805	40000 Low Strengt	0	29,168	9000	14,584	42.24	26.39	16.43	11.53
57+01.0 P-401/P-40	4.7	327,580	200000 P-209	8	176,117	75000 P-154	15.2	18,028	40000 Low Strengt	0	25,183	9000	12,592	49.13	32.37	20.9	14.75
58+08.0 P-401/P-40	4.7	350,188	200000 P-209	8	219,850	75000 P-154	15.2	12,792	40000 Low Strengt	0	29,424	9000	14,712	46.78	31.9	20.73	14.24
59+05.0 P-401/P-40	4.7	409,886	200000 P-209	8	189,760	75000 P-154	15.2	16,366	40000 Low Strengt	0	27,601	9000	13,801	45.5	31.63	19.31	13.93
60+04.0 P-401/P-40	4.7	910,328	200000 P-209	8	50,781	75000 P-154	15.2	12,864	40000 Low Strengt	0	20,401	9000	10,201	62.96	43.82	27.8	18.41
61+00.0 P-401/P-40	4.7	321,144	200000 P-209	8	160,012	75000 P-154	15.2	21,308	40000 Low Strengt	0	25,746	9000	12,873	48.19	31.34	19.37	13.96
72+01.0 P-401/P-40	4.7	290,732	200000 P-209	8	97,766	75000 P-154	15.2	41,207	40000 Low Strengt	0	17,217	9000	8,609	53.55	37.67	26.04	18.46
73+02.0 P-401/P-40	4.7	406,792	200000 P-209	8	125,220	75000 P-154	15.2	13,124	40000 Low Strengt	0	25,430	9000	12,715	54.74	36.26	21.83	16.85
74+03.0 P-401/P-40	4.7	328,703	200000 P-209	8	124,713	75000 P-154	15.2	5,176	40000 Low Strengt	0	21,816	9000	10,908	72.39	51.97	32.45	23.18
75+00.0 P-401/P-40	4.7	212,910	200000 P-209	8	37,247	75000 P-154	15.2	47,080	40000 Low Strengt	0	14,398	9000	7,199	74.93	49.05	29.58	20.53
75+78.0 P-401/P-40	4.7	721,448	200000 P-209	8	29,889	75000 P-154	15.2	18,791	40000 Low Strengt	0	23,447	9000	11,724	65.02	41.32	23.1	16.38
Section 2 Sta 13+ to 61+		435,494	+235,494		138,736	+63,736		30,843	(-9,157)		26,565	+17,565	13,282				
Std D	eviation	230,806	50.0%	Std Deviation	65,189	47.0%	Std Deviation	40,266	50.0% Std	Deviation	5,288	19.9%	2,644	20%			
Corrected Pe	ercentile	217,747		85th Percentile	73,547	Со	prrected Percentile	15,422			21,277	85th Percentile	10,638				
Section 2 Sta 72+ to 75+		392,117	+192,117		82,967	+7,967		25,076	(-14,924)		20,462	+11,462	10,231				
Std D	eviation	176,119	44.9%	Std Deviation	41,604	50.0%	Std Deviation	16,265	50.0% Std	Deviation	4,068	19.9%	2,034	19.9%			
85th Pe	ercentile	215,998	Co	rrected Percentile	41,484	Со	prrected Percentile	12,538			16,394	85th Percentile	8,197				

DMI - ft	Measured E	Measured D	Measured E	Calculated	Calculated	Calculated	[Calculated	[Calculated	Calculated	Calculated Deflection
13+00.0	10.11	7.89	6.04	47.9	30.81	20.45	13.94	9.93	7.49	5.99
14+07.0	9.94	6.36	6.08	47.39	30.96	20.09	13.3	9.18	6.74	5.3
15+02.0	8.02	6.75	5.43	42.79	26.94	17.32	11.7	8.36	6.35	5.12
16+02.0	8.43	6.28	4.87	47.94	31.29	17.77	11.96	9.25	7.57	6.35
17+08.0	8.04	6.26	4.72	41.79	25.34	16.32	11.02	7.88	6	4.85
18+01.0	8.79	7.02	5.33	54.28	34.92	21.12	13.63	9.47	7.13	5.74
19+03.0	8.8	6.67	5.35	45.73	27.86	17.62	11.73	8.3	6.29	5.07
20+00.0	8.17	5.94	4.91	47.05	31.2	17.16	10.93	8.32	6.85	5.77
21+00.0	7.77	5.9	4.96	41.9	25.31	15.72	10.64	7.74	6	4.9
22+03.0	9.49	6.89	6.12	50.08	32.8	25.17	20.47	16.97	14.24	12.1
23+01.0	8.29	6.46	5.65	46.74	28.95	18.45	12.06	8.3	6.13	4.86
23+95.0	6.43	4.91	3.97	34.82	19.71	12.65	8.9	6.67	5.26	4.33
25+04.0	9.81	7.31	5.95	52.94	34.55	21.98	14.45	9.98	7.38	5.84
26+11.0	8.76	6.72	5.06	44.28	27.68	17.72	11.91	8.47	6.43	5.18
27+01.0	8.18	6.73	5.68	43.38	27.84	18.08	12.13	8.54	6.4	5.1
27+99.0	7.89	6.75	5.76	42.4	25.18	16.15	11.16	8.21	6.4	5.23
29+07.0	8.19	6.42	4.86	38.69	23.12	15.05	10.66	8.01	6.32	5.2
30+04.0	7.56	5.89	5.04	45.8	23.99	14.13	10.25	7.99	6.46	5.38
31+10.0	9	5.98	6.11	42.36	28.95	19.73	13.59	9.64	7.17	5.65
31+13.0	9.68	7.57	5.76	42.66	28.86	19.62	13.55	9.66	7.24	5.74
32+09.0	9.8	7.17	6.37	43.83	28.55	19.06	13.11	9.41	7.13	5.72
33+03.0	10.17	7.76	5.96	47.22	30.17	19.99	13.75	9.93	7.58	6.11
34+01.0	10.61	7.52	5.92	49.91	33.06	22.73	16.1	11.86	9.15	7.39
34+05.0	9.43	6.45	5.34	47.75	29.89	19.25	12.87	9.07	6.83	5.47
35+00.0	8.96	6.98	5.58	44.01	28.72	19.59	14.08	10.59	8.32	6.8
35+03.0	9.44	6.4	6.11	45.68	29.73	19.11	12.47	8.46	6.13	4.78
36+01.0	9.81	6.29	6.82	56	35.11	20.81	13.6	9.72	7.49	6.12
37+01.0	11.08	7.83	7.43	57.66	39.28	23.88	15.53	10.99	8.41	6.84
38+01.0	12.13	7.83	6.99	52.09	34.94	23.65	16.15	11.37	8.42	6.62
39+03.0	9.57	6.96	5.81	44.91	29.68	19.28	13.01	9.22	6.94	5.55
40+04.0	11.61	7.87	6.31	53.94	37.95	26.11	17.72	12.14	8.63	6.5
41+04.0	8.48	6.52	6.25	56.51	30.35	17.34	12.87	10.27	8.41	7.05
42+01.0	10.01	7.19	5.54	47.87	30.9	20.05	13.44	9.45	7.07	5.64
43+00.0	10.15	6.95	5.9	54.65	35.54	21.81	13.98	9.52	7.01	5.57
44+00.0	11.74	8.19	7.29	52.83	37.88	24.94	16.77	11.73	8.67	6.82
45+06.0	8.61	6.61	5.18	44.54	27.67	19.35	14.44	11.23	9.03	7.48
45+10.0	9.06	6.93	5.5	41.93	27.94	18.76	12.95	9.3	7.04	5.62
46+01.0	12.14	9.27	7.02	51.32	34.56	24.01	16.82	12.13	9.15	1.27
47+03.0	6.1	4.89	3.93	46.03	22.27	12./1	9.87	8.01	6.59	5.54
48+06.0	11.21	7.36	7.04	66.78	44.07	27.9	17.53	11.25	7.68	5.73
49+05.0	15.39	9.96	7.81	68.77	50.2	35.58	24.55	16.84	11./8	8.63
50+04.0	13.24	7.97	7.89	130.18	58.13	29.35	21.4	16.88	13.66	11.39
50+10.0	13.22	8.33	7.25	89.11	50.03	33.14	24.08	18.47	14.75	12.2
51+08.0	13.13	8.98	6./1	53.53	38.58	28.15	20.16	14.53	10.//	8.34 7.00
51+14.0	11.58	9.53	6.57	54.1	35.65	23.44	16.15	11./	8.96	1.23
52+05.0	9.07	6.69	6.39	62.14	45./5	32.13	21.58	14.07	9.12	b.U/
52+12.0	10.67	1	6.21	64.82	45.07	25.56	15.15	10.22	1.8	b.44
53+09.0	13.27	8	7.07	77.81	54.68	36.86	23.91	15.25	9.9	6.81

Left

54+01.0	9.19	7.13	5.43	51.47	28.91	18.06	13.43	10.59	8.63	7.21
54+99.0	9.2	5.9	5.61	42.65	29.38	20.15	13.9	9.84	7.29	5.71
55+99.0	8.7	7.78	5.6	42.4	25.91	16.89	11.87	8.85	6.95	5.7
57+01.0	11.5	7.91	6.23	49.17	32.03	21.47	14.84	10.7	8.14	6.53
58+08.0	9.64	7.75	5.46	46.91	31.42	21.15	14.27	9.89	7.21	5.61
59+05.0	10.59	6.97	6.57	45.75	30.54	20.49	14.05	10	7.5	5.96
60+04.0	13.44	8.52	7.31	62.65	44.36	27.74	18.09	12.64	9.53	7.67
61+00.0	10.81	8.12	5.98	48.35	30.68	20.3	14.04	10.22	7.86	6.36
72+01.0	13.47	10.56	7.3	55.67	34.41	23.83	18.07	14.28	11.63	9.7
73+02.0	11.64	6.64	6.06	54.69	36.01	23.16	15.37	10.69	7.93	6.28
74+03.0	15.04	8.85	8.39	72.7	50.86	33.95	22.29	14.72	10.11	7.43
75+00.0	12.57	8.17	6.84	77.47	42.18	26.89	20.54	16.44	13.49	11.32
75+78.0	10.56	6.29	5.85	64.59	41.91	23.48	14.61	10.31	8	6.6

Section 2 St

Section 2 St

Left

Sta 0+50 to 3+	Left Backcalc	Right Backcalc	Average	
Surface Asphalt	239,800	369,583	304,691	
Base	76,682	68,258	72,470	
Subbase	39,967	64,004	51,985	
Subgrade	7,451	5,736	6,594	

DMI - ft	Laye	r 1 Typ La	ayer Thick	Backca	alcula Se	eed Modulus	Layer 2 [·]	Typ Layer Thick E	Backcalcula S	Seed Modul La	ayer 3 [·]	Typ Layer Thick B	ackcalcula S	Seed Modull	ayer 4 Typ Layer	Thick Ba	ackcalcula S	Seed Modul C	Corrected SN	Measured El	Measured C	Measured C M	leasured C
+(01.0 P-40	1/P-40	4	1,158	,420	200000	P-209	8	676,168	75000 P-	-154	15	390,933	40000 (Jser Define	0	28,724	4500	14,362	11.66	8.72	10.52	6.78
+5	53.0 P-40	1/P-40	4	794	,090	200000	P-209	8	11,358	75000 P-	-154	15	161,893	40000 0	Jser Define	0	16,053	4500	8,027	49.04	30.15	21.17	12.96
1+0	0.0 P-40	1/P-40	4	437	,602	200000	P-209	8	22,518	75000 P-	-154	15	100,180	40000 (Jser Define	0	13,805	4500	6,903	49.65	30.72	23.35	13.63
1+0)5.0 P-40	1/P-40	4	1,760	,063	200000	P-209	8	10,480	75000 P-	-154	15	24,604	40000 (Jser Define	0	18,349	4500	9,175	48.88	27.71	23.25	12.89
1+0	08.0 P-40	1/P-40	4	222	,784	200000	P-209	8	24,892	75000 P-	-154	15	126,814	40000 (Jser Define	0	13,292	4500	6,646	48.43	27.81	23.72	14.59
1+5	50.0 P-40	1/P-40	4	433	,726	200000	P-209	8	223,911	75000 P-	-154	15	126,779	40000 (Jser Define	0	10,594	4500	5,297	36.53	21.64	17.46	10.41
2+0	03.0 P-40	1/P-40(4	436	,714	200000	P-209	8	146,394	75000 P-	-154	15	10,318	40000 (Jser Define	0	26,837	4500	13,419	38.31	23.89	15.45	10.43
2+5	51.0 P-40	1/P-40	4	232	,540	200000	P-209	8	68,568	75000 P-	-154	15	143,241	40000 (Jser Define	0	13,803	4500	6,902	37.35	21.63	28.23	11.91
3+()0.0 P-40	1/P-40(4	1,176	,551	200000	P-209	8	44,357	75000 P-	-154	15	67,304	40000 (Jser Define	0	31,685	4500	15,843	24.56	14.1	12.63	6.39
Section	2 Sta 13+	- to 61+ Std	Deviation	739 495	,166 688	+539,166		Std Deviation	136,516 202 505	+61,516		Std Deviation	128,007 105 154	+88,007	Std Dev	iation	19,238 7 324	+14,738 38.1%	8,841 3 105	35.1%			
	Co	orrected I	Percentile	369	,583	00.070	Corre	ected Percentile	68,258	00.075	Corre	ected Percentile	64,004	00.070	85th Perc	entile	11,914 h	Percentile	5,736	00.170			

DMI - ft	Measured CMe	easured CMe	easured E Ca	alculated I C	alculated I	Calculated [Calculated I	Calculated I	Calculated IC	Calculated I
+01.0	6.02	5.22	16.52	12.32	10.43	9.07	7.92	6.93	6.08	6.28
+53.0	7.48	7.6	74.89	44.9	24.27	17.49	14.35	11.95	10.06	9.28
1+00.0	6.92	7.87	76.06	41.92	25.59	20.29	16.73	13.95	11.85	6.81
1+05.0	6.77	6.83	70.09	50.16	29.46	18.25	12.8	9.99	8.3	6.03
1+08.0	7.42	7.12	84.05	40.03	25.79	21.25	17.62	14.75	12.54	
1+50.0	6.81	6.48	44.9	33.2	27.81	24.03	20.86	18.17	15.89	
2+03.0	8.11	6.03	57.1	37.86	24.2	15.69	10.6	7.67	5.99	
2+51.0	8.43	6.31	57.71	31.78	24.1	20.23	17.07	14.5	12.44	
3+00.0	4.76	4.02	41.86	24.98	14.08	9.87	7.69	6.26	5.24	4.95

Section 2 St

Right

DMI - ft	Layer 1 Ty	pLayer	Thick Ba	ackcalcula S	Seed Modulus	Layer 2	Typ Layer Thick E	Backcalcula	Seed Modul Lay	er 3 Typ Layer Thick	Backcalcula	Seed Modul Layer 4 Typ Laye	er Thick B	ackcalcula S	Seed Modul C	orrected SN	Neasured El	Measured C	Measured C M	easured E
+00	.0 P-401/P-40)(4	799,204	200000	P-209	8	450,251	75000 P-1	54 15	259,991	40000 User Define	0	19,774	4500	9,887	13.4	10.18	41.65	8.68
+06	.0 P-401/P-40)(4	700,162	200000	P-209	8	173,463	75000 P-1	54 15	5,668	40000 User Define	0	26,234	4500	13,117	41.24	25.04	25.87	11.89
+11	.0 P-401/P-40)(4	255,011	200000	P-209	8	74,508	75000 P-1	54 15	119,959	40000 User Define	0	11,311	4500	5,656	42.55	25.77	40.62	12.5
+53	.0 P-401/P-40)(4	200,949	200000	P-209	8	52,374	75000 P-1	54 15	111,346	40000 User Define	0	12,598	4500	6,299	46.87	30.87	20.2	13.96
1+01	.0 P-401/P-40)(4	399,400	200000	P-209	8	131,681	75000 P-1	54 15	14,977	40000 User Define	0	25,510	4500	12,755	35.93	22.35	14.74	10.34
1+51	.0 P-401/P-40)(4	145,667	200000	P-209	8	56,038	75000 P-1	54 15	156,160	40000 User Define	0	14,803	4500	7,402	40.44	23.92	19.45	11.52
2+02	.0 P-401/P-40)(4	302,492	200000	P-209	8	165,513	75000 P-1	54 15	20,707	40000 User Define	0	27,030	4500	13,515	30.84	17.02	18.72	8.65
2+54	.0 P-401/P-40)(4	547,180	200000	P-209	8	131,975	75000 P-1	54 15	13,895	40000 User Define	0	29,908	4500	14,954	33.67	20.07	14	9.01
3+01	.0 P-401/P-40)(4	966,329	200000	P-209	8	144,474	75000 P-1	54 15	16,700	40000 User Define	0	27,092	4500	13,546	30.39	18.65	16.33	9.3
Contine 0) .		470 500	. 270 500			152 264	. 79. 264		70.024	.20.024		01 504	. 17 004	10 700				
Section 2	518 0+50 10 3	0+ Dovi	iation	479,099	+279,599		Std Doviation	100,004	+70,304	Std Doviation	19,934	+39,934 50.0% Std Do	viction	21,004 6.690	+17,004	10,792	210/			
	Corroct		auun	212,111	50.0%	Corre		76 600	50.0%		03,201 20.067	Su De	viation	0,00Z	JI.U%	3,34 I 7 451	31%			
	Correct	eu Perci	entile	239,800		Corre	ected Percentile	10,082	C	Jorreclea Percentile	39,907			14,902 N	Percentile	1,451				

DMI - ft	Measured C Me	easured C Me	easured E Ca	alculated I Ca	alculated I Ca	alculated [Ca	alculated [Ca	alculated I Ca	Iculated [Cal	culated I
+00.0	7.47	4.84	24.1	17.91	15.12	13.13	11.45	10	8.77	
+06.0	6.68	6.45	57.57	42.05	28.66	19.18	12.84	8.87	6.48	
+11.0	7.37	6.85	60.35	36.2	28.1	23.72	20.16	17.25	14.87	
+53.0	9.85	7.37	68.83	36.72	27.02	22.42	18.76	15.84	13.53	
1+01.0	8.5	6.07	56	35.68	22.54	14.9	10.47	7.89	6.36	
1+51.0	6.97	6.15	65.42	31.32	23.41	19.55	16.36	13.78	11.74	
2+02.0	5.96	5.07	49.68	30.69	19.76	13.37	9.62	7.39	6.01	
2+54.0	6.39	5.61	51.69	33.41	20.7	13.34	9.12	6.74	5.37	
3+01.0	6.53	5.65	45.67	31.57	20.59	13.99	9.99	7.57	6.07	

Section 2 St

Left

Sta 0+50 to 3+	Left Backcalc	Right Backcalc	Average	
Surface Asphalt	266,542	233,193	249,867	20,
Base	46,874	35,341	41,108	
Subbase	31,580	38,565	35,072	
Subgrade	9,393	9,073	9,233	15,
-				

DMI - ft	Layer 1 Typ Layer	Thick I	Backcalcula Se	ed Modulus Layer 2	? Typ Layer Thick E	Backcalcula S	Seed Modu La	yer 3 Typ Layer Th	ick Backcalcula	Seed Modul Layer	[∙] 4 Typ Layer ⁻	Thick E	Backcalcula S	Seed Modu
+52.0	P-401/P-40(4.7	162,621	200000 P-209	8	82,046	75000 P-1	154 15	5.2 75,045	40000 Low S	Strengt	0	15,378	9000
1+04.0	P-401/P-40(4.7	654,812	200000 P-209	8	59,023	75000 P-1	154 15	5.2 17,714	40000 Low S	Strengt	0	23,744	9000
1+54.0	P-401/P-40(4.7	278,121	200000 P-209	8	57,243	75000 P-1	154 15	5.2 74,639	40000 Low S	Strengt	0	21,252	9000
2+10.0	P-401/P-40(4.7	367,145	200000 P-209	8	114,384	75000 P-1	154 15	5.2 8,864	40000 Low S	Strengt	0	31,440	9000
2+55.0	P-401/P-40(4.7	869,231	200000 P-209	8	19,818	75000 P-1	154 15	5.2 209,389	40000 Low S	Strengt	0	25,027	9000
3+00.0	P-401/P-40	4.7	363,220	200000 P-209	8	141,935	75000 P-1	154 15	5.2 30,345	40000 Low S	Strengt	0	28,711	9000
Section 2 S	ta 13+ to 61+		466,386	+266,386		66,503	(-8,497)		77,130	+37,130			23,368	+14,368
	Std Devi	iation	258,980	50.0%	Std Deviation	31,162	46.9%	Std Deviati	on 71,685	50.0%	Std Devia	ation	5,222	22.3%
	Corrected Perce	entile	233,193		85th Percentile	35,341		Corrected Percent	ile 38,565		85th Perce	entile	18,146 h	Percentile

DMI - ft	Corrected SM	leasured El	Measured E	Measured E	Measured E	Measured E	Measured D	Measured D	Calculated I	Calculated [Calculated I	Calculated I	Calculated [Calculated [(Calculated I
+52.0	7,689	41.08	22.9	20.78	10.99	7.37	6.25	60.23	33.06	23.98	19.19	15.69	13.02	10.99	6.28
1+04.0	11,872	37.94	21.7	16.53	10.73	7.12	6.22	57.66	37.87	22.77	14.86	10.57	8.12	6.62	9.28
1+54.0	10,626	33.61	18.58	15.19	9.32	6.66	5.69	53.98	28.69	18.52	14.26	11.45	9.41	7.9	6.81
2+10.0	15,720	38.11	21.83	17.53	8.44	6.41	3.92	59.13	38.29	23.52	14.53	9.31	6.43	4.89	6.03
2+55.0	12,514	28.66	16.22	12.63	9.52	7.35	5.33	47.46	28.73	16.07	11.61	9.44	7.85	6.6	6.93
3+00.0	14,356	27.13	16.66	12.21	8.69	7.6	5.54	43.61	26.62	17.24	12.03	8.92	6.98	5.71	4.95

Section 2 St 11,684 2,611 22.3% 9,073

DMI - ft	Layer 1 Typ Lag	yer Thick	Backcalcula Se	eed Modulus Laye	r 2 Typ Layer Thick	Backcalcula	Seed Modu Lay	er 3 Typ Layer Thick	Backcalcula	Seed Modu Laye	er 4 Typ Layer '	Thick B	Backcalcula S	Seed Modu
+52.0	P-401/P-40	4.7	1,189,372	200000 P-209	9 8	5,940	75000 P-1	54 15.2	188,365	40000 Low	Strengt	0	18,602	9000
1+04.0	P-401/P-40	4.7	358,557	200000 P-209	9 8	112,212	75000 P-1	54 15.2	14,364	40000 Low	Strengt	0	22,569	9000
1+52.0	P-401/P-40	4.7	301,474	200000 P-209	9 8	158,476	75000 P-1	54 15.2	80,060	40000 Low	Strengt	0	15,365	9000
1+56.0	P-401/P-40	4.7	317,043	200000 P-209	9 8	169,095	75000 P-1	54 15.2	19,715	40000 Low	Strengt	0	24,330	9000
1+59.0	P-401/P-40	4.7	379,158	200000 P-209	9 8	48,070	75000 P-1	54 15.2	85,653	40000 Low	Strengt	0	22,318	9000
2+14.0	P-401/P-40	4.7	929,796	200000 P-209	9 8	10,892	75000 P-1	54 15.2	41,977	40000 Low	Strengt	0	32,614	9000
2+52.0	P-401/P-40	4.7	379,174	200000 P-209	9 8	105,833	75000 P-1	54 15.2	32,345	40000 Low	Strengt	0	33,288	9000
3+01.0	P-401/P-40(4.7	410,097	200000 P-209	8 8	139,471	75000 P-1	54 15.2	42,797	40000 Low	Strengt	0	31,430	9000
Section 2 S	ta 0+50 to 3+		533,084	+333,084		93,749	+18,749		63,160	+23,160			25,065	+16,065
	Std D	Deviation	312,526	50.0%	Std Deviation	60,318	50.0%	Std Deviation	53,091	50.0%	Std Devi	ation	6,278	25.0%
	Corrected P	ercentile	266,542	Co	prrected Percentile	46,874	(Corrected Percentile	31,580				18,787 h	Percentile

DMI - ft	Corrected S	Measured E	Measured D	Measured E	Calculated [Calculated I	Calculated I	Calculated I	Calculated [Calculated	Calculated I				
+52.0	9,301	46.85	27.11	19.8	12.76	9.01	7.11	67.67	47.63	27.59	17.29	12.61	10.18	8.57	5.99
1+04.0	11,285	38	24.08	17.13	11.56	8.82	6.79	58.47	37.98	24.47	16.47	11.69	8.83	7.08	5.3
1+52.0	7,683	29.76	17.76	33.68	9.1	7.11	5.37	45.88	30.06	23.12	18.84	15.63	13.12	11.15	5.12
1+56.0	12,165	31.13	18.46	22.17	8.88	6.1	5.59	48.56	31.39	21.08	14.68	10.69	8.21	6.62	6.35
1+59.0	11,159	31.22	18.39	14.05	8.64	6.88	5.47	50.51	27.57	17.24	13.25	10.68	8.79	7.4	4.85
2+14.0	16,307	37.17	19.63	11.23	6.43	4.73	4.61	60.41	38.18	18.79	10.35	7.1	5.65	4.76	5.74
2+52.0	16,644	25.62	15.04	10.68	7.51	6.1	4.79	44.27	25.46	15.37	10.39	7.62	5.96	4.89	5.07
3+01.0	15,715	23.61	14.01	11.86	8.04	6.12	4.9	38.77	23.12	14.96	10.65	8.06	6.4	5.28	5.77

Section 2 St 12,532

3,139 25%

9,393

DMI - ft Layer 1 Typ Layer Thick	k Backcalcula S	Seed Modulus Layer 2 Typ L	ayer Thick Ba	ckcalcula S	Seed Modul Layer 3	3 Typ Layer Thick Ba	ackcalcula S	eed Modul Layer 4 Typ Laye	er Thick B	ackcalcula So	eed Modul Co	orrected SM	easured E N	Measured E	Measured C M	easured C
+00.0 P-401/P-40; 4.7	428,117	200000 P-209	8	301,909	75000 P-154	15.2	140,852	40000 Low Strengt	0	33,266	9000	16,633	10.9	8.61	7.85	6.48
+02.0 P-401/P-40; 4.7	219,069	200000 P-209	8	504,992	75000 P-154	15.2	55,522	40000 Low Strengt	0	27,776	9000	13,888	16.2	12.33	9.7	7.34
+06.0 P-401/P-40、 4.7	495,876	200000 P-209	8	393,463	75000 P-154	15.2	7,912	40000 Low Strengt	0	26,764	9000	13,382	26.08	17.43	12.65	9.14
+52.0 P-401/P-40; 4.7	271,220	200000 P-209	8	40,240	75000 P-154	15.2	67,847	40000 Low Strengt	0	14,119	9000	7,060	35.32	22.45	16	10.65
1+02.0 P-401/P-40; 4.7	257,803	200000 P-209	8	103,414	75000 P-154	15.2	9,793	40000 Low Strengt	0	19,934	9000	9,967	36.94	22.4	15.11	10.63
1+54.0 P-401/P-40、 4.7	7 519,530	200000 P-209	8	88,372	75000 P-154	15.2	9,166	40000 Low Strengt	0	20,656	9000	10,328	35.23	23.31	15.06	10.24
2+01.0 P-401/P-40; 4.7	729,492	200000 P-209	8	30,732	75000 P-154	15.2	13,928	40000 Low Strengt	0	23,205	9000	11,603	35.1	20.07	13.17	8.57
2+07.0 P-401/P-40; 4.7	7 530,733	200000 P-209	8	81,799	75000 P-154	15.2	12,820	40000 Low Strengt	0	29,848	9000	14,924	28.29	16.76	9.89	6.84
2+10.0 P-401/P-40; 4.7	377,208	200000 P-209	8	60,906	75000 P-154	15.2	21,723	40000 Low Strengt	0	25,623	9000	12,812	27.52	15.65	11.07	7.39
2+50.0 P-401/P-40; 4.7	282,454	200000 P-209	8	28,804	75000 P-154	15.2	78,100	40000 Low Strengt	0	15,359	9000	7,680	35.69	19.3	19.45	8.63
2+54.0 P-401/P-40; 4.7	7 862,198	200000 P-209	8	7,221	75000 P-154	15.2	69,683	40000 Low Strengt	0	19,439	9000	9,720	38.6	21.31	13.68	8.81
2+58.0 P-401/P-40; 4.7	275,823	200000 P-209	8	89,365	75000 P-154	15.2	9,569	40000 Low Strengt	0	20,172	9000	10,086	37.42	22.61	14.99	10.07
3+01.0 P-401/P-40; 4.7	470,142	200000 P-209	8	56,893	75000 P-154	15.2	8,256	40000 Low Strengt	0	18,256	9000	9,128	42.73	25.44	17.54	11.32
Section 2 Sta 13+ to 61+	439,974	+239,974		137,547	+62.547		38,859	(-1,141)		22,647	+13.647	11,507				
Std Deviation	185,430	42.1% Std	Deviation	151,557	50.0%	Std Deviation	39,304	50.0% Std De	eviation	5,477	24.2%	2,773	24.1%			
85th Percentile	254,544	Corrected	Percentile	68,773	Corr	rected Percentile	19,430	85th Pe	rcentile	17,171 h l	Percentile	8,734				

DMI - ft	Measured CI	Measured E	Measured D	Calculated	Calculated I	Calculated I	Calculated	Calculated I	Calculated I	Calculated I
+00.0	5.31	3.65	19.6	12.02	9.03	7.2	5.88	4.88	4.11	6.28
+02.0	5.78	4.25	25.98	16.34	12.24	9.29	7.24	5.79	4.78	9.28
+06.0	7.59	5.39	32.59	24.53	18.21	13.18	9.48	6.93	5.23	6.81
+52.0	8.32	6.48	54.09	30.66	20.37	16.07	13.13	10.92	9.23	6.03
1+02.0	8.11	6.37	55.72	36.09	23.2	15.31	10.58	7.8	6.16	
1+54.0	8.01	5.54	51.52	35.65	22.96	15.13	10.4	7.61	5.96	
2+01.0	5.34	4.5	54.01	35.8	20.19	12.23	8.31	6.3	5.15	
2+07.0	5.47	4.03	43.59	28.1	16.66	10.35	6.91	5.04	4	
2+10.0	5.85	4.41	46.77	27.54	15.91	10.42	7.53	5.86	4.82	
2+50.0	6.15	5.58	56.4	30.55	18.95	14.79	12.05	9.98	8.42	
2+54.0	7.41	5.79	58.56	39.04	21.19	12.86	9.31	7.49	6.28	
2+58.0	8.25	6	57.16	36.81	23.18	15.08	10.33	7.6	6.01	6.93
3+01.0	8.59	5.93	62.5	42.47	26.21	16.76	11.36	8.31	6.57	4.95

Section 2 St

Right

DMI - ft	Layer 1 Typ Lag	yer Thick E	Backcalcula Se	eed Modulus	Layer 2 T	yp Layer Thick B	ackcalcula	Seed Modul La	iyer 3 Typ Layer Thick I	Backcalcula	Seed Modul Layer	4 Typ Layer Thick	Backcalcula	Seed Modul C	orrected SN	leasured E	Measured CM	easured C M	easured E
+00.0) P-401/P-40(4.7	248,569	200000	P-209	8	66,151	75000 P-	154 15.2	80,640	40000 Low S	Strengt 0	20,090	9000	10,045	28.96	17.26	15.67	11.99
+49.0) P-401/P-40(4.7	256,948	200000	P-209	8	53,856	75000 P-1	154 15.2	38,133	40000 Low S	Strengt 0	13,617	9000	6,809	48.84	29.65	25.06	15.62
1+01.0) P-401/P-40(4.7	579,434	200000	P-209	8	56,198	75000 P-	154 15.2	17,233	40000 Low S	Strengt 0	19,106	9000	9,553	42.03	26.72	18.91	13.11
1+56.0) P-401/P-40(4.7	247,810	200000	P-209	8	171,873	75000 P-	154 15.2	6,790	40000 Low S	Strengt 0	24,709	9000	12,355	43.28	28.03	19.44	12.85
2+01.0) P-401/P-40(4.7	202,340	200000	P-209	8	51,134	75000 P-	154 15.2	80,645	40000 Low S	Strengt 0	15,098	9000	7,549	42.07	26.96	17.63	11.37
2+51.0) P-401/P-40(4.7	209,674	200000	P-209	8	393,320	75000 P-	154 15.2	2,222	40000 Low S	Strengt 0	26,222	9000	13,111	50.03	31.72	43.7	15.51
3+01.0) P-401/P-40(4.7	1,177,169	200000	P-209	8	5,846	75000 P-	154 15.2	212,744	40000 Low S	Strengt 0	19,343	9000	9,672	46	25.91	20.72	11.98
Section 2 S	Sta 0+50 to 3+		417,421	+217,421			114,054	+39,054		62,630	+22,630		19,741	+10,741	9,870				
	Std E Corrected P	Deviation Percentile	332,934 208,710	50.0%	Correc	Std Deviation cted Percentile	123,211 57,027	50.0%	Std Deviation Corrected Percentile	68,255 31,315	50.0%	Std Deviation	4,250 15,491 h	21.5% Percentile	2,125 7,745	22%			

DMI - ft	Measured [CMeasured E	Measured E	Calculated I	Calculated I	Calculated	Calculated	Calculated I	Calculated I	Calculated I
+00.0	8.41	7.5	51.75	27.66	18.6	14.56	11.78	9.72	8.17	5.99
+49.0	9.29	8.63	71.69	42.96	28.81	21.94	17.49	14.33	12.01	5.3
1+01.0	9.7	7.35	64.26	42.74	26.51	17.87	13.02	10.12	8.28	5.12
1+56.0	8.59	6.24	63.67	43.01	28.78	18.9	12.55	8.73	6.52	6.35
2+01.0	9.8	5.3	64.89	34.79	23.99	19.2	15.74	13.1	11.08	4.85
2+51.0	8.67	7.24	69.4	52.84	40.06	28.68	19.75	13.31	8.97	5.74
3+01.0	8.47	6.26	67.37	47.1	26.95	16.71	12.16	9.84	8.3	5.07

Section 2 St

Left

DMI - ft Layer 1	I Typ Laye	er Thick B	ackcalcula S	eed Modulus Laye	er 2 Typ Layer Thick I	BackcalculaS	Seed Modul Layer	3 Typ Layer Thick E	Backcalcula	Seed Modul Layer 4 Typ Layer	⁻ Thick I	BackcalculaS	Seed Modul C	orrected SM	leasured E M	easured CM	easured C M	easured C
+00.0 P-401/P	P-40(4.7	567,611	200000 P-20	9 8	379,103	75000 P-154	15.2	185,525	40000 Low Strengt	0	32,303	9000	16,152	14.69	10.45	10.25	7.34
+49.0 P-401/P	P-40(4.7	842,643	200000 P-20	9 8	40,467	75000 P-154	15.2	3,481	40000 Low Strengt	0	21,605	9000	10,803	66.85	41.37	29.45	16.29
1+02.0 P-401/P	P-40(4.7	413,493	200000 P-20	9 8	89,859	75000 P-154	15.2	16,045	40000 Low Strengt	0	27,824	9000	13,912	35.08	20.3	13.91	9.13
1+50.0 P-401/P	P-40(4.7	487,260	200000 P-20	9 8	57,664	75000 P-154	15.2	16,090	40000 Low Strengt	0	29,469	9000	14,735	36.59	20.63	12	8.56
2+03.0 P-401/P	P-40(4.7	180,733	200000 P-20	9 8	70,602	75000 P-154	15.2	60,820	40000 Low Strengt	0	14,611	9000	7,306	52.1	20.69	22.87	8.78
2+54.0 P-401/P	P-40(4.7	969,710	200000 P-20	9 8	17,244	75000 P-154	15.2	165,306	40000 Low Strengt	0	27,514	9000	13,757	28.83	16.94	12.35	7.74
3+00.0 P-401/P	P-40(4.7	407,718	200000 P-20	9 8	40,364	75000 P-154	15.2	107,874	40000 Low Strengt	0	24,187	9000	12,094	28.72	17.04	13.48	8.7
Section 2 Sta 13+ to	o 61+ Std De 85th Per	eviation	552,738 251,063 301.676	+352,738 45.4%	Std Deviation	99,329 116,253 49.665	+24,329 50.0% Coi	Std Deviation	79,306 69,266 39.653	+39,306 50.0% Std Dev 85th Pere	viation	25,359 5,436 19.923 h	+16,359 21.4% Percentile	12,777 2,924 9.853	22.9%			

DMI - ft	Measured I	C Measured D	Measured E	Calculated	Calculated I	Calculated	[Calculated]	Calculated I	Calculated I	Calculated I
+00.0	5.81	4.34	21.68	14.16	11.06	9.07	7.55	6.36	5.41	6.28
+49.0	7.37	6.69	90.76	67.85	42.98	26.06	15.72	9.9	6.86	9.28
1+02.0	7.16	5.69	55.7	34.72	20.9	13.45	9.33	7.02	5.65	6.81
1+50.0	7.28	3 4.73	59.77	36.56	20.42	12.52	8.54	6.44	5.24	6.03
2+03.0	5.95	5 5.04	64.59	36.25	25.67	20.28	16.48	13.63	11.47	
2+54.0	6.3	5.06	47.93	29.57	16.03	10.93	8.65	7.14	5.98	6.93
3+00.0	6.43	5.5	50.15	26.61	16.01	12.32	9.97	8.22	6.91	4.95

Section 2 St

Right

DMI - ft	Layer 1 Typ Layer	⁻ Thick B	ackcalculaS	Seed Modulus L	ayer 2 Typ Laye	er Thick B	ackcalcula	Seed Modul Layer	r 3 Typ Layer Thick E	Backcalcula	Seed Modul Layer 4 Typ Layer	Thick I	Backcalcula S	eed Modul C	orrected SM	easured E Me	easured C M	easured C Me	easured E
+00.0	0 P-401/P-40(4.7	562,961	200000 F	-209	8	375,178	75000 P-154	4 15.2	184,307	40000 Low Strengt	0	31,852	9000	15,926	14.55	12.5	9.55	7.23
+53.0	0 P-401/P-40(4.7	431,124	200000 F	-209	8	88,537	75000 P-154	4 15.2	5,473	40000 Low Strengt	0	21,952	9000	10,976	53.22	33.1	21.84	14.27
1+07.0	0 P-401/P-40(4.7	1,193,460	200000 F	-209	8	15,956	75000 P-154	4 15.2	121,136	40000 Low Strengt	0	26,242	9000	13,121	30.73	18.62	11.98	8.97
1+53.0	0 P-401/P-40(4.7	481,600	200000 F	-209	8	103,163	75000 P-154	4 15.2	16,122	40000 Low Strengt	0	30,497	9000	15,249	32.63	19.6	12.44	8.55
2+04.0	0 P-401/P-40(4.7	225,558	200000 F	-209	8	105,089	75000 P-154	4 15.2	48,748	40000 Low Strengt	0	16,156	9000	8,078	35.98	20.92	36.69	9.32
2+58.0	0 P-401/P-40(4.7	542,112	200000 F	-209	8	164,208	75000 P-154	4 15.2	20,553	40000 Low Strengt	0	30,367	9000	15,184	28.27	17.77	11.73	8.94
3+00.0	0 P-401/P-40(4.7	395,080	200000 F	-209	8	168,387	75000 P-154	4 15.2	18,236	40000 Low Strengt	0	27,710	9000	13,855	29.8	19.7	14.56	9.97
Section 2	Sta 0+50 to 3+ Std Dev	viation	547,414 283 422	+347,414	Std De	eviation	145,788 104 933	+70,788	Std Deviation	59,225 62 691	+19,225 50.0% Std Dev	iation	26,397 5 192	+17,397 19.7%	13,198 2,596	20%			
	Corrected Perc	centile	273,707	00.070	Corrected Per	rcentile	72,894	Cc	prrected Percentile	29,613			21,204 h	Percentile	10,602	2070			

DMI - ft	Measured E	CMeasured E	Measured E	Calculated	I Calculated I	Calculated	[Calculated	I Calculated I	Calculated I	Calculated I
+00.0	6.11	4.77	22.04	14.41	11.26	9.24	7.7	6.48	5.52	5.99
+53.0	9.48	7.08	75.52	52.68	33.85	21.6	14.03	9.6	7.12	5.3
1+07.0	7.04	5.77	48.05	31.46	17.73	11.79	9.08	7.43	6.23	5.12
1+53.0	6.54	5.61	51.02	32.4	19.7	12.65	8.71	6.49	5.19	6.35
2+04.0	5.73	5.29	56.87	34.38	24.5	18.97	15.19	12.45	10.42	4.85
2+58.0	7.15	5.56	41.84	27.67	18.12	12.36	8.86	6.72	5.4	5.74
3+00.0	6.93	5.29	46.27	30.19	19.92	13.6	9.72	7.35	5.89	5.07

Section 2 St

Left

Sta 62+ to 71+	Left Backcalc	Right Backcalc	Average
Surface Asphalt	182,281	184,526	183,403
Base	228,561	331,172	279,867
Subbase	61,528	62,795	62,161
Subgrade	9,991	9,421	9,706

DMI - ft Layer	1 Typ Layer T	hick Ba	ackcalcula S	Seed Modulus I	Layer 2 Ty	p Layer Thick I	Backcalcula	Seed Modul Lag	yer 3 Typ Layer Thick I	Backcalcula	Seed Modul Layer	4 Typ Layer Thic	k Backcalcula	Seed Modulus	s - psi	Measured D	Measured D	Measured EN	leasured E
62+01.0 P-401/	/P-40(2	394,182	200000 I	P-401/P-4	0: 4.5	88,911	400000 P-2	209 18.5	200,935	75000 Low S	Strengt (24,803	9000	12,402	42.49	24.57	15.07	10.41
62+53.0 P-401/	/P-40:	2	235,254	200000 I	P-401/P-4	0: 4.5	189,648	400000 P-2	209 18.5	81,554	75000 Low S	Strengt () 24,355	9000	12,178	46.89	30.78	15.19	10.41
63+00.0 P-401/	/P-40:	2	383,555	200000 I	P-401/P-4	0: 4.5	1,019,142	400000 P-2	209 18.5	202,013	75000 Low S	Strengt () 18,651	9000	9,326	36.53	24.63	15.05	11.49
63+50.0 P-401/	/P-40:	2	421,066	200000 I	P-401/P-4	0: 4.5	230,326	400000 P-2	209 18.5	134,322	75000 Low S	Strengt () 26,028	9000	13,014	35.97	23.46	15.53	11.13
64+02.0 P-401/	/P-40:	2	491,411	200000 I	P-401/P-4	0; 4.5	147,600	400000 P-2	209 18.5	173,992	75000 Low S	Strengt () 22,064	9000	11,032	38.86	25.93	17.63	12.29
64+51.0 P-401/	/P-40:	2	184,048	200000 I	P-401/P-4	0; 4.5	225,246	400000 P-2	209 18.5	186,001	75000 Low S	Strengt () 22,744	9000	11,372	37.14	25.02	17.16	12.11
65+07.0 P-401/	/P-40(2	711,501	200000 I	P-401/P-4	0; 4.5	2,112,088	400000 P-2	209 18.5	426,565	75000 Low S	Strengt () 35,090	9000	17,545	22.77	12.53	5.63	3.02
65+55.0 P-401/	/P-40(2	613,481	200000 I	P-401/P-4	0; 4.5	1,376,288	400000 P-2	209 18.5	26,946	75000 Low S	Strengt (20,308	9000	10,154	47.69	35.5	25.43	17.26
65+99.0 P-401/	/P-40:	2	307,652	200000 I	P-401/P-4	0; 4.5	582,013	400000 P-2	209 18.5	58,323	75000 Low S	Strengt () 21,391	9000	10,696	45.72	29.91	20.44	18.57
66+53.0 P-401/	/P-40:	2	267,774	200000 I	P-401/P-4	0; 4.5	910,272	400000 P-2	209 18.5	51,900	75000 Low S	Strengt () 24,838	9000	12,419	42.31	28.74	18.91	12.63
67+04.0 P-401/	/P-40:	2	329,042	200000 I	P-401/P-4	0; 4.5	432,769	400000 P-2	209 18.5	124,327	75000 Low S	Strengt () 25,069	9000	12,535	33.93	23.73	16.55	11.53
67+56.0 P-401/	/P-40:	2	134,822	200000 I	P-401/P-4	0: 4.5	411,056	400000 P-2	209 18.5	104,590	75000 Low S	Strengt () 22,003	9000	11,002	41.71	27.25	18.48	13.5
68+00.0 P-401/	/P-40:	2	210,679	200000 I	P-401/P-4	0: 4.5	396,775	400000 P-2	209 18.5	118,136	75000 Low S	Strengt (20,818	9000	10,409	38.82	28.2	19.65	14.89
68+49.0 P-401/	/P-40:	2	262,654	200000 I	P-401/P-4	0: 4.5	871,302	400000 P-2	209 18.5	73,904	75000 Low S	Strengt () 21,742	9000	10,871	40.25	27.81	18.98	15.28
69+03.0 P-401/	/P-40:	2	643,825	200000 I	P-401/P-4	0: 4.5	1,097,888	400000 P-2	209 18.5	40,149	75000 Low S	Strengt () 20,790	9000	10,395	43.71	32.82	22.56	15.13
69+51.0 P-401/	/P-40:	2	254,978	200000 I	P-401/P-4	0: 4.5	560,683	400000 P-2	209 18.5	96,773	75000 Low S	Strengt () 15,343	9000	7,672	44.99	30.97	21.78	30.21
69+98.0 P-401/	/P-40:	2	348,891	200000 I	P-401/P-4	0; 4.5	901,123	400000 P-2	209 18.5	58,043	75000 Low S	Strengt () 20,518	9000	10,259	43.21	30.43	21.02	16.88
71+00.0 P-401/	/P-40(2	122,191	200000 I	P-401/P-4	0: 4.5	369,075	400000 P-2	209 18.5	102,140	75000 Low S	Strengt () 22,770	9000	11,385	42.44	27.89	18.52	13.42
Section 3 Sta 62+	to 71+		350,945	+150,945			662,345	+262,345		125,590	+50,590		22,740	+13,740	11,370)			
	Std Devia	tion	166,419	47.4%		Std Deviation	504,134	50.0%	Std Deviation	90,126	50.0%	Std Deviation	n 3,899	17.1%	1,949	17.1%			
	85th Percer	ntile	184,526		Correct	ed Percentile	331,172		Corrected Percentile	62,795		85th Percentile	e 18,841	h Percentile	9,421				

DMI - ft	Measured C	Measured EI	Measured E	Calculated I	Calculated	I Calculated I	Calculated I	Calculated I	Calculated I	Calculated I
62+01.0	8.3	5.51	4.78	42.78	19.78	15.34	12.5	10.27	8.53	7.17
62+53.0	10.14	7.47	5.59	47.78	25.9	17.49	13.26	10.46	8.47	7.04
63+00.0	7.69	6.26	5.17	29.7	22.19	17.93	15.09	12.82	10.96	9.44
63+50.0	8.04	7.35	5.28	36.41	20.96	15.29	12.11	9.81	8.07	6.76
64+02.0	9.28	7	5.51	39.14	21.73	16.82	13.77	11.4	9.52	8.05
64+51.0	9.02	7.86	5.76	37.43	21.49	16.71	13.64	11.23	9.32	7.85
65+07.0	2.44	2.36	2.61	15.18	11.44	9.36	7.94	6.79	5.83	5.05
65+55.0	12.92	9.72	7.44	47.4	36.3	24.8	17.24	12.64	9.83	8.02
65+99.0	10.42	8.69	6.31	45.66	30.51	20.49	15.11	11.78	9.52	7.92
66+53.0	10.69	8.52	6.32	42.31	28.73	18.72	13.3	10.15	8.12	6.73
67+04.0	10.02	7.74	6.19	34.62	21.95	15.94	12.56	10.16	8.36	7.01
67+56.0	10.81	9.28	6.86	42.26	25.52	18.31	14.32	11.51	9.43	7.9
68+00.0	10.69	8.59	6.8	39.95	25.34	18.74	14.92	12.14	10.03	8.43
68+49.0	12.01	9.07	7.31	40.25	27.78	19.38	14.64	11.58	9.43	7.87
69+03.0	13.25	9.56	7.92	43.75	32.66	22.44	16.09	12.21	9.71	8.02
69+51.0	13.53	10.27	7.8	45.3	31.89	24.14	19.44	16	13.35	11.3
69+98.0	12.54	9.11	7.49	43.14	30.66	21.16	15.68	12.25	9.91	8.25
71+00.0	9.64	7.76	5.97	43.26	25.3	17.96	13.96	11.17	9.12	7.63

Section 3 St

Right

DMI - ft	Layer 1 Typ Laye	er Thick B	Backcalcula	Seed Modulus Layer	2 Typ Layer Thick	Backcalcula	Seed Modul Layer 3	3 Typ Layer Thick E	Backcalcula	Seed Modul Layer 4 T	yp Layer Thick	Backcalcu S	Seed Modulus -	Corrected S M	leasured D	Measured EM	easured EM	easured D
62+02.0	P-401/P-40	2	284,024	200000 P-401	/P-40: 4.5	179,725	400000 P-209	18.5	194,728	75000 Low Stren	ngt 0	24,790	9000	12,395	35.85	21.2	14.35	16.3
62+53.0	P-401/P-40	2	288,745	200000 P-401	/P-40: 4.5	229,045	400000 P-209	18.5	220,296	75000 Low Stren	ngt 0	26,725	9000	13,363	31.33	21.95	13.86	10.46
63+02.0	P-401/P-40	2	341,780	200000 P-401	/P-40: 4.5	200,243	400000 P-209	18.5	150,309	75000 Low Strer	ngt 0	21,742	9000	10,871	38.44	27.73	17.81	13.35
63+52.0	P-401/P-40	2	379,669	200000 P-401	/P-40: 4.5	735,870	400000 P-209	18.5	57,927	75000 Low Stren	ngt 0	31,502	9000	15,751	37	24.31	14.48	10.98
64+01.0	P-401/P-40	2	381,707	200000 P-401	/P-40: 4.5	106,043	400000 P-209	18.5	168,457	75000 Low Stren	ngt 0	23,848	9000	11,924	42.28	25.14	15.17	10.96
64+50.0	P-401/P-40(2	611,503	200000 P-401	/P-40: 4.5	496,884	400000 P-209	18.5	69,370	75000 Low Stren	ngt 0	31,532	9000	15,766	35.26	22.23	14.23	11.04
64+64.0	P-401/P-40(2	645,007	200000 P-401	/P-40: 4.5	1,882,238	400000 P-209	18.5	380,016	75000 Low Stren	ngt 0	31,707	9000	15,854	25.64	14.02	6.15	4.65
65+01.0	P-401/P-40(2	284,669	200000 P-401	/P-40: 4.5	254,401	400000 P-209	18.5	129,173	75000 Low Stren	ngt 0	20,261	9000	10,131	40.33	27.47	19.49	14.79
65+60.0	P-401/P-40(2	227,462	200000 P-401	/P-40: 4.5	419,158	400000 P-209	18.5	26,461	75000 Low Stren	ngt 0	21,105	9000	10,553	64.07	40.93	23.61	15.87
66+02.0	P-401/P-40(2	330,917	200000 P-401	/P-40: 4.5	417,782	400000 P-209	18.5	54,331	75000 Low Stren	ngt 0	22,263	9000	11,132	47.4	30.09	20.64	14.37
66+08.0	P-401/P-40(2	310,080	200000 P-401	/P-40: 4.5	335,824	400000 P-209	18.5	67,452	75000 Low Stren	ngt 0	20,581	9000	10,291	47.46	28.63	18.26	20.19
66+11.0	P-401/P-40(2	339,026	200000 P-401	/P-40: 4.5	370,492	400000 P-209	18.5	63,638	75000 Low Stren	ngt 0	21,366	9000	10,683	46.64	28.02	18.79	17.66
66+48.0	P-401/P-40(2	495,988	200000 P-401	/P-40: 4.5	104,883	400000 P-209	18.5	196,821	75000 Low Stren	ngt 0	22,678	9000	11,339	40.5	24.04	16.17	11.93
67+01.0	P-401/P-40(2	62,530	200000 P-401	/P-40: 4.5	217,663	400000 P-209	18.5	115,657	75000 Low Stren	ngt 0	23,368	9000	11,684	48.62	25.1	16.95	13.22
67+52.0	P-401/P-40(2	161,902	200000 P-401	/P-40: 4.5	541,064	400000 P-209	18.5	115,829	75000 Low Stren	ngt 0	20,239	9000	10,120	38.92	26.15	17.68	22.96
67+58.0	P-401/P-40(2	137,983	200000 P-401	/P-40: 4.5	1,114,693	400000 P-209	18.5	43,486	75000 Low Stren	ngt 0	27,621	9000	13,811	44.24	28.55	18.11	12.28
68+00.0	P-401/P-40(2	432,802	200000 P-401	/P-40: 4.5	182,509	400000 P-209	18.5	144,404	75000 Low Stren	ngt 0	20,814	9000	10,407	39.88	26.14	17.01	15.98
68+52.0	P-401/P-40(2	410,456	200000 P-401	/P-40: 4.5	557,733	400000 P-209	18.5	65,204	75000 Low Stren	ngt 0	18,970	9000	9,485	44.84	30.96	21.65	16.68
69+02.0	P-401/P-40(2	431,283	200000 P-401	/P-40: 4.5	552,438	400000 P-209	18.5	68,311	75000 Low Stren	ngt 0	22,682	9000	11,341	40.87	27.49	18.57	13.83
69+52.0	P-401/P-40(2	271,975	200000 P-401	/P-40: 4.5	126,003	400000 P-209	18.5	135,030	75000 Low Stren	ngt 0	23,623	9000	11,812	44.03	24.5	14.96	12.24
70+00.0	P-401/P-40(2	893,599	200000 P-401	/P-40: 4.5	842,936	400000 P-209	18.5	55,125	75000 Low Stren	ngt 0	21,346	9000	10,673	39.6	28.62	20.57	15.47
71+00.0	P-401/P-40(2	221,484	200000 P-401	/P-40: 4.5	189,078	400000 P-209	18.5	185,203	75000 Low Stren	ngi 0	22,545	9000	11,273	37.5	24.04	17.1	12.03
Section 3 Sta	a 62+ to 71+		361,118	+161,118		457,123	+57,123		123,056	+48,056		23,696	+14,696	11,848				
	Std De	eviation	178,837	49.5%	Std Deviation	401,167	50.0%	Std Deviation	79,362	50.0%	Std Deviation	3,714	15.7%	1,857	16%			
	85th Pe	rcentile	182,281	Co	rrected Percentile	228,561	Corr	rected Percentile	61,528			19,982	85th Percentile	9,991				

JIVII - π	Measured LIM	easured L M	easured L Ca	alculated I Ca	alculated I Ca	alculated I Ca	alculated I Ca	ilculated I Ca	liculated I Ca	iculated Defle	Ction L
62+02.0	8.48	6.37	4.93	35.92	19.79	15.32	12.48	10.26	8.51	7.16	
62+53.0	7.18	5.98	5	31.73	18.07	14.07	11.51	9.48	7.89	6.64	
63+02.0	8.56	7.57	5.36	39.11	22.86	17.4	14.1	11.58	9.62	8.1	
63+52.0	8.37	6.49	4.74	37.02	24.05	15.12	10.56	8	6.38	5.29	
64+01.0	8.86	6.99	5.77	42.48	20.95	15.96	12.91	10.57	8.75	7.35	
64+50.0	7.82	6.13	5	35.26	22.28	14.34	10.34	7.97	6.41	5.32	
64+64.0	2.33	2.55	2.24	16.8	12.66	10.33	8.76	7.48	6.43	5.56	
65+01.0	11.04	8.34	6.4	40.75	24.96	18.79	15.13	12.38	10.27	8.64	
65+60.0	13	7.68	7.57	64.13	40.78	24.01	15.79	11.57	9.13	7.56	
66+02.0	11.29	8.73	6.7	47.43	30.29	19.79	14.42	11.18	9	7.48	
66+08.0	11.5	8.46	6.89	47.1	29.59	20.18	15.25	12.06	9.8	8.17	
66+11.0	11.04	8.91	7.52	46.01	29.2	19.66	14.7	11.55	9.36	7.8	
66+48.0	9.49	7.48	5.89	40.78	20.63	16.12	13.25	10.98	9.18	7.77	
67+01.0	10.5	8.62	6.69	48.71	24.11	17.36	13.58	10.83	8.8	7.35	
67+52.0	9.67	7.06	5.68	39.54	25.57	18.93	15.07	12.28	10.16	8.56	
67+58.0	8.85	7.07	5.67	44.25	28.69	17.82	12.11	9	7.13	5.9	
68+00.0	10.45	8.46	6.42	40.18	23.51	17.91	14.55	11.98	9.97	8.41	
68+52.0	13.06	11.56	7.78	44.87	30.98	21.72	16.5	13.1	10.69	8.93	
69+02.0	11.26	9.24	7.15	40.89	27.4	18.72	14	11.01	8.94	7.45	
69+52.0	10.98	8.44	6.51	44.1	22.45	16.61	13.21	10.68	8.77	7.33	
70+00.0	11.35	9.78	7.31	39.49	28.97	20.29	15.06	11.73	9.48	7.88	
71+00.0	9.87	8.14	5.94	37.8	21.32	16.59	13.56	11.16	9.27	7.8	

DMI - ft Measured E Measured E Calculated I Calculated Deflection D7 mil

Section 3 St

Left

ATTACHMENT 3

GEOTECHNICAL STUDY GEOTECHNICAL AND PAVEMENT EVALUATION STUDY OF PARALLEL TAXIWAY TEXAS REGIONAL GULF COAST REGIONAL AIRPORT (LBX) BRAZORIA COUNTY, TEXAS

> SUBMITTED TO CIVIL PES, LLC 814 THORNWICK DRIVE HOUSTON TX 77079

BY HVJ ASSOCIATES, INC. HOUSTON, TEXAS OCTOBER 30, 2023

REPORT NO. HG2210070.1

Houston 6120 S. Dairy Ashford Rd. Austin 281.933.7388 Ph Dallas 281.933.7293 Fax San Antonio www.hvj.com

October 30, 2023

Mr. Thomas D. Dodson, PE President Civil PEs, LLC. 814 Thornwick Drive Houston, TX 77079

Re: Geotechnical and Pavement Evaluation Study of Parallel Taxiway Texas Regional Gulf Coast Regional Airport (LBX) Angleton, Brazoria County Owner: Brazoria County HVJ Report No. HG2210070.1

Dear Mr. Dodson:

Submitted herein is the report of our geotechnical investigation for the above referenced project. The study was performed in accordance with proposal number HG2210070.1 dated March 15, 2023 (Revised on March 21, 2023) and is subject to the limitations presented in this report.

It has been a pleasure to work with you on this project and we appreciate the opportunity to be of service. Please notify us if there are questions or if we may be of further assistance.

Sincerely,

HVJ ASSOCIATES, INC. Texas Firm Registration No. F-000646

Anil K. Raavi, PE Professional Services Manager

AR/RA

Rakıb Ahmed, Ph.D, EII Staff Engineer

The seal appearing on this document was authorized by Anil K. Raavi, PE 122152 on October 30, 2023. Alteration of a sealed document without proper notification to the responsible engineer is an offense under the Texas Engineering Practice Act.

TABLE OF CONTENTS

<u>Page</u>

1	EXECUTIVE SUMMARY	1
2	INTRODUCTION	2
3	FIELD EXPLORATION 3.1 General 3.2 Sampling Methods 3.3 Survey Data 3.4 Groundwater Observations	2 2 3 3
4	 LABORATORY TESTING	344
5	SITE CHARACTERIZATION	4 5 5 5
6	LIMITATIONS	.5

PLATES

	<u>Plate</u>
SITE VICINITY MAP	1
PLAN OF BORINGS	2
GEOLOGIC MAP	

APPENDICES

BORING LOGS AND KEY TO TERMS & SYMBOLS	A
SUMMARY OF LABORATORY TEST RESULTS	B
CBR TEST RESULTS	C
SIEVE TEST RESULTS	D
DCP TEST DATA	E

1 EXECUTIVE SUMMARY

HVJ Associates, Inc. (HVJ) was retained by Civil PEs, LLC to perform geotechnical investigation for evaluating the parallel taxiway located adjacent to Runway 17-35 at the Texas Regional Gulf Coast Regional Airport (LBX) located at 8015 Airport Road in Angleton, Texas. A site vicinity map is presented on Plate 1.

The purpose of this study was to perform a geotechnical investigation and provide exploration data of the taxiway for rehabilitation of the taxiway by overlay or if a new taxiway needs to be constructed. Pavement thickness design and construction phase services are not part of HVJ's scope of work for this project. A separate memorandum will be submitted at later date with back calculated modulus values using Falling Weight Deflector (FWD) test data. Subsurface conditions at the site were investigated by six (6) soil borings to a depth of about 11 feet below existing grade. Based on the subsurface conditions revealed by the soil borings, the findings and recommendations of this report are summarized below:

- 1. The pavement thickness consisted of asphalt (4"-6.5"), flexible base (7"-23.5") and lime stabilized clay (7"-25").
- 2. Firm to very stiff cohesive soils (CH) were generally observed from the surface to the termination depth of the borings. Details of the subsurface stratigraphy encountered in the borings are shown on the boring logs presented in Appendix A.
- 3. Groundwater was not observed during drilling and shortly after drilling operation. It should be noted that groundwater levels determined during drilling may not accurately reflect the groundwater conditions during construction, and therefore should only be considered as approximate.

Please note that this executive summary does not fully relate our findings and opinions. Those findings and opinions are only presented through our full report.

2 INTRODUCTION

2.1 Project Description

HVJ Associates, Inc. (HVJ) was retained by Civil PEs, LLC to perform geotechnical investigation for evaluating the parallel taxiway located adjacent to Runway 17-35 at the Texas Regional Gulf Coast Regional Airport (LBX) located at 8015 Airport Road in Angleton, Texas. A site vicinity map is presented on Plate 1.

The purpose of this study was to perform a geotechnical investigation and provide exploration data of the taxiway for rehabilitation of the taxiway by overlay or if a new taxiway needs to be constructed. Pavement thickness design and construction phase services are not part of HVJ's scope of work for this project. A separate memorandum will be submitted at later date with back calculated modulus values using Falling Weight Deflector (FWD) test data.

2.2 Geotechnical Investigation Program

The objectives of this study were to gather information on subsurface conditions of the existing taxiway. The following objectives were accomplished:

- Drilling and field testing six soil borings, labeled as B-1B to B-6B, to a depth of approximately 11 feet below the existing grade to investigate soil stratigraphy and obtain samples for laboratory testing and
- Performing laboratory tests on soil samples to determine the index and engineering properties of the soils.
- Performing one California Bearing Ratio (CBR) test and six Dynamic Cone Penetration (DCP) tests to evaluate the subgrade beneath the pavement.

Subsequent sections of this report contain descriptions of the field exploration and laboratory testing program.

3 FIELD EXPLORATION

3.1 General

The field exploration program undertaken for the project was performed between August 7, 2023 and August 8, 2023. Subsurface conditions at the site were evaluated by drilling six borings to a depth of about 11 feet. The pavement was cored before starting the drilling operation. The borings were drilled using dry auger drilling techniques with the use of a truck mounted drilling equipment. Pavement was backfilled with quickrete and borings were backfilled with bentonite chips upon completion of drilling. The approximate boring locations are shown in Plate 2 of this report.

3.2 Sampling Methods

Soil samples were obtained continuously to a depth of 11 feet. Cohesive soil samples were obtained with a three-inch thin walled (Shelby) tube sampler in general accordance with ASTM D1587 standard. Each sample was removed from the sampler in the field, carefully examined, and then classified. The shear strength of the cohesive soils was estimated by a hand penetrometer in the field. Suitable portions of each sample were sealed and packaged for transportation to our laboratory.

Detailed descriptions of the materials encountered in the borings with a key to the terms and symbols used for soil classification are given on the boring logs presented in Appendix A.

3.3 Survey Data

The survey data of the boring locations was not available at the time of writing this report. The GPS coordinates obtained by a hand-held GPS device and approximate elevations estimated from Google Earth are included in the table below and also presented on the boring logs in Appendix A.

	Boring	Depth,	GPS Coordinates		Elevation,
Structure	No. H	Feet	Latitude	Longitude	feet
Taxiway	B-1	11	29°5'59.8" N	95°27'39.2" W	17
	B-2	11	29°6'24.30" N	95°27'38.9" W	14
	B-3	11	29°6'43.0" N	95°27'39.3" W	14
	B-4	11	29°6'58.8" N	95°27'39.5" W	14
	B-5	11	29°7'5.5" N	95°27'39.4" W	14
	B-6	11	29°6'6.6" N	95°27'40.3" W	17

3.4 Groundwater Observations

Groundwater levels in the borings were observed during drilling operations. Drilling was suspended for 10 minutes, and groundwater levels after five and ten minutes were measured. Table 2-2 summarizes the groundwater level measurements taken at the boring locations.

Groundwater Depth below Existing Grade, Feet				
Boring	During Drilling 5 Minutes after Drilling		10 Minutes after Drilling	
B-1B	Dry	Dry	Dry	
B-2B	Dry	Dry	Dry	
B-3B	Dry	Dry	Dry	
B-4B	Dry	Dry	Dry	
B-5B	Dry	Dry	Dry	
B-6B	Dry	Dry	Dry	

Table 3-2 - Groundwater Readings

It should be noted that groundwater levels determined during drilling may not accurately reflect the true groundwater conditions, and therefore should only be considered as approximate.

4 LABORATORY TESTING

4.1 General

Selected soil samples were tested in the laboratory to determine applicable physical and engineering properties. Tests were performed according to the relevant ASTM Standards. The laboratory program included moisture content, Atterberg limits, percent finer than No. 200 sieve, dry density, sieve Analysis and laboratory CBR.

The moisture content, Atterberg limits and percent finer than No. 200 sieve results were utilized to verify field classifications by the Unified Soils Classification System. Sieve analysis were performed to obtain gradation curve and CBR tests were performed to estimate the subgrade strength. The type and number of tests performed for this investigation are summarized in Table 3-1.

Type of Test	Number of Tests		
Moisture Content (ASTM D2216)	12		
Atterberg Limits (ASTM D4318)	6		
Percent Passing No. 200 Sieve (ASTM D1140)	6		
Sieve Analysis (Tex-110E)	1		
Laboratory CBR (ASTM D1883)	1		

Table 4-1 – Type and Number of Laboratory Tests

The laboratory test results are presented on the boring logs in Appendix A. A summary of laboratory test results is provided in Appendix B. The conversion between pocket penetrometer readings obtained in the field to the shear strength parameters presented in the boring logs were obtained using a conversion factor of 1/3.

4.2 Sieve Analysis

We performed sieve analysis on the composite flexible base sample collected from the upper 4 feet below existing ground. The test results are presented in Appendix D.

4.3 California Bearing Ratio Tests

One California Bearing Ratio (CBR) test was performed on the composite flexible base sample and the results are presented in Appendix C. The composite sample is prepared using the flexible base samples obtained from multiple pavement cores. The results are presented in the table below.

Type of Sample (Depth)	Dry Density Before Dry Density After Soaking (pcf) Soaking (pcf)		Blows	CBR
Composite -Flexible Base	109.5	113	10	4.17
Composite -Flexible Base	114.3	115.7	25	13.3
Composite -Flexible Base	123.5	123	65	40.03

Table 4-3 – CBR Test Results

5 SITE CHARACTERIZATION

5.1 General Geology

A review of the Bureau of Economic Geology, University of Texas at Austin, Geologic Atlas of Texas Houston Sheet, Paul Weaver Memorial Edition (Revised in 1982) indicates that the project site is located in Alluvial formation in vicinity of Beaumont Formation. A geologic map is presented on Plate 3.

The Alluvial soils (Qal) are heterogeneous in nature containing interbedded layers of clay, silt and sand. The depositional features include point-bar, natural levee, stream channel, backswamp, coastal marsh, mud-flat and narrow beach deposits.

5.2 Soil Stratigraphy

HVJ's interpretation of soil and groundwater conditions at the project site is based on information obtained at the drilled boring locations. Significant variations in areas not explored by the project borings may require re-evaluation of our findings. Details of the subsurface soil stratigraphy are shown on the boring logs presented in Appendix A.

Firm to very stiff cohesive soils (CH) were generally observed from the surface to the termination depth of the borings. Details of the subsurface stratigraphy encountered in the borings are shown on the boring logs presented in Appendix A.

5.3 Existing Pavement Thickness

The pavement thickness information obtained at the pavement core locations is summarized in the following table.

Boring	Asphalt (Inches)	Flexible Base (Inches)	Lime Stabilized Clay (Inches)
B-1B	6	7	25
B-2B	4.5	23.5	12
B-3B	4.5	23	10
B-4B	6.5	18.5	12
B-5B	5	23	7
B-6B	4	23	10

Table 5-1 – Existing Pavement Thicknesses

5.4 DCP Test Results

Six Dynamic Cone Penetrometer (DCP) tests were performed in accordance with ASTM D6951 near the boring locations. DCP test results are presented in Appendix E.

DCP tests were performed after coring through the pavement, base and stabilized subgrade. The depths cored below which DCP tests were conducted varied from 36.1 to 36.3 inches. In the DCP tests, the penetration rate was fairly consistent.

6 LIMITATIONS

This investigation was performed for the exclusive use of Civil PEs, LLC for the geotechnical evaluation Study of Parallel Taxiway in Brazoria County, Texas. HVJ has endeavored to comply with generally accepted geotechnical engineering practice common in the local area. HVJ makes no warranty, expressed or implied. The analyses and recommendations contained in this report are based on data obtained from subsurface exploration, laboratory testing, the project information provided to us and our experience with similar soils and site conditions. The methods used indicate subsurface conditions only at the specific locations where samples were obtained, only at the time they were obtained, and only to the depths penetrated. Samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. Should any subsurface

conditions other than those described in our boring logs be encountered, HVJ should be immediately notified so that further investigation and supplemental recommendations can be provided.

PLATES

<u>Alluvium Formation</u> – Floodplain deposits, including low terrace deposits 3-8 feet above floodplain subject to flooding; clay, silt, sand, gravel, and organic matter; silt and clay, calcareous, dark gray to dark brown; sand, largely quartz, gravel, siliceous, mostly chert, quartzite, and petrified wood, along Colorado River much limestone, igneous, and metamorphic rock, probably mostly reworked from terrace deposits, fluviatile morphology well preserved with point bars, oxbows, and abandoned channel segments.

HVJ	6120 S. Dairy Houston, Texa 281.933.7388 281.933.7293	Ashford Road s 77072-1010 Ph Fax						
DATE 00/05/2023	APPROVED	DBY:	PREPARED BY:					
DATE. 07/05/2025	PI)	RA					
Gl	EOLOGI	C MAP						
EVALUATION S	TUDY OF	PARALI	LEL TAXIWA	Y				
PROJECT NO .:	DF	DRAWING NO.:						
HG22100/	0.1		PLATE 3					

APPENDIX A

BORING LOGS AND KEY TO TERMS & SYMBOLS

LOG OF BORING B-1B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.099944; -95.460889							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

DATE: 8/7/2023

ELEVATION, FT	o DEPTH, FT	SYMBOL	SAMPLES	SAMPLER: Shelby Tube/Split Spoon DRY AUGER: <u>0</u> TO <u>11</u> FT WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT DESCRIPTION OF MATERIAL	STANDARD PENETRATION TEST, BLOWS PER FOOT	PERCENT PASSING NO. 200 SIEVE	DRY UNIT WEIGHT, PCF	MOISTURE CONTENT, %	LIQUID LIMIT, %	PLASTIC LIMIT, %	PLASTICITY INDEX, %	UNDRAINED SHEAR STRENGTH, TSF ○ HAND PENETROMETER ● UNCONFINED COMPRESSION ■ UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION △ TORVANE 0.5 1.0 1.5 2.0 2.5
HG2210070.1.GPJ 8/24/23				DESCRIPTION OF MATERIAL Pavement: 6" Asphalt, 7" Flexible Base, 25" Lime Stabilized Clay Stiff, dark gray and brown, FAT CLAY (CH) - w/ gravel at 7'-9'		92.9	97	27 32	76	25	51	0.5 1.0 1.5 2.0 2.5
H DEP ∑ ∑ Drille	DEPTH TO WATER IN BORING:											

LOG OF BORING B-2B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.10675; -95.460806							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

ELEVATION, FT	DEPTH, FT	SYMBOL	SAMPLES	SAMPLER: Shelby Tube/Split Spoon DRY AUGER: <u>0</u> TO <u>11</u> FT WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT	STANDARD ENETRATION TEST, BLOWS PER FOOT	PERCENT PASSING NO. 200 SIEVE	DRY UNIT WEIGHT, PCF	MOISTURE CONTENT, %	LIQUID LIMIT, %	PLASTIC LIMIT, %	LASTICITY INDEX, %	UNDRAINED SHEAR STRENGTH, TSF HAND PENETROMETER UNCONFINED COMPRESSION UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TORVANE 0.5 1.0 1.5 2.0 2.5
10070.1.GPJ 8/24/23				DESCRIPTION OF MATERIAL Pavement: 4.5" Asphalt, 23.5" Flexible Base, 12" Lime Stabilized Clay Stiff to very stiff, dark gray and brown, FAT CLAY (CH)	BLO	92.7	88 88	34 31	76	24	52	0.5 1.0 1.5 2.0 2.5
DEPT V DEPT	TH TO V FREE WATE	WATEI WATEI ER DEI	R IN ER PTH	N BORING: DURING DRILLING: H 24 HOURS AFTER DRILLING: Logged By: Edgar/Jobin HVJ Ass	ociate	es, Ir	nc.	N	lote:	Surve	ey inf	ormation not available

LOG OF BORING B-3B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.111944; -95.460889							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

	F				SAMPI FR: Shelby Tube/Salit Spoon	EST,	Ю И	Ę		%	%	X, %	UNDRAINED SHEAR STRENGTH, TSF
	л, Л	F	۲	S		ARD N TE	ASSI	/EIG	JRE IT, %	MIT, 9	MIT	NDE	
	ATIO	PTH,	MBC	APLE	DRY AUGER: <u>U</u> IO <u>11</u> FT	AND ² ATIC	NT P. 200 S	PCF	JISTU		IC LI	ITY II	
	ELEV.	DEF	SY	SAN	WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT	ST/ JETR OWS	RCEI NO. 2	N X N	MO NO NO	INDI-	LAST	STIC	Image: Image: First complexity of the second se
	ш	0			DESCRIPTION OF MATERIAL	BL	Ш́	DR			Ц	PLA	0.5 1.0 1.5 2.0 2.5
			<u>۸</u> + -	Π	Pavement: 4.5" Asphalt, 23" Flexible								
					Dase, TO LITTE Stabilized Udy								
		5	$\overline{//}$		Stiff to very stiff, dark gray and brown,			83	38				
				1	FAT CLAT WITH SAND (CH)								
				1									Ψ
							77.3		20	53	18	35	0
		10			-w/ gravel at 9'-11'								0
						-							t d t t t
24/23													
J 8/.													
1.GP													
10070													
HG221													
Ë													
0	DEPTH 1	TO W	ATE	R II	N BORING:	1	1		N	lote: ;	L Surve	y info	prmation not available
	∑ FF	REE V	VATE	R								~	
	¥ ₩	ATEF		PTF		ociat	مو ار		_				
	Drilled By	/: <u>Soil</u>	Tech		Logged By: Edgar/Jobin	ocial	-ə, II	ю.					

LOG OF BORING B-4B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.116333; -95.460972							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

	ELEVATION, FT	DEPTH, FT	SYMBOL SAMBIES	SAMPLER: Shelby Tube/Split Spoon	STANDARD ENETRATION TEST, BLOWS PER FOOT	PERCENT PASSING NO. 200 SIEVE	JRY UNIT WEIGHT, PCF	MOISTURE CONTENT, %	LIQUID LIMIT, %	PLASTIC LIMIT, %	S UNDRAINED SHEAR STRENGTH, TSF UNCONFINED COMPRESSION UNCONFINED COMPRESSION UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION L L UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION L S △ TORVANE V 0 L UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION
0070.1.GPJ 8/24/23				WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT DESCRIPTION OF MATERIAL Pavement: 6.5" Asphalt, 18.5" Flexible Base, 12" Lime Stabilized Clay Firm to very stiff, dark gray and brown, FAT CLAY (CH) - w/ silt seams at 7'-11'	PENETRAL PEN	PERCEN	906 BRY UNI	30 21	56 F	18 18	D TRIAXIAL COMPRESSION △ TORVANE 0.5 1.0 1.5 2.0 2.5
COH HG22	DEPTH ∑ FI ▼ W	TO W REE V		IN BORING: R DURING DRILLING: TH 24 HOURS AFTER DRILLING:				N	lote: S	Surve	y information not available
l	Drilled B	y: <u>Soil</u>	<u>Tech</u>	Logged By: Edgar/Jobin HVJ Ass	ociate	es, Ir	IC.	-			

LOG OF BORING B-5B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.118194; -95.460944							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

	_				SAMDIED. Shalhu Tuha/Shit Shaan		DT,	Ů N	Ļ		%	%	<, %	UNDRAINED SHEAR STRENGTH, TSF
	х Х	FT		S	SAMPLER. SHEIDY I UDE/SPIIT SPOON	RD	N TE	ASSI	EIGH	T, %	11T, 9	MIT,	NDE	
	ATIOI	TH, I	ABO	PLE	DRY AUGER: <u>0</u> TO <u>11</u> FT	NDA	ATIO PER	T P/ 17 SI	T WI	ISTU TEN	D LIN	CLIN	L≺⊫	 UNCONFINED COMPRESSION UNCONSOLIDATED-UNDRAINED
	-EV#	DEP	SYN	SAM	WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT	STAI	ETR/	CEN 0. 20	UNI L	NOC NOC	QUIE	ASTI	TICI	TRIAXIAL COMPRESSION
	Ξ	0		-	DESCRIPTION OF MATERIAL	\neg	BLC	PER N	DRY		Ľ	PL	PLAS	0.5 1.0 1.5 2.0 2.5
		0	λ <i>†</i> -	Π	Pavement: 5" Asphalt, 23" Flexible Base,		-							
			71		7" Lime Stabilized Clay									
					Stiff, dark gray and brown, FAT CLAY	_								
		5			(CH)				86	32				
								90.4		25	64	21	43	
		10			-w/arayel at 0'-11'									
		10			-w/ graver at 9 - 11									0
24/23														
J 8/:														
1.GP,														
0070.														
3221(
т т														
		FO 14	A T							L				
	JEPTH] ∑ FF	IOW. REE V	ATEF	K IN	N BORING: DURING DRILLING [,]					N	ote: S	Surve	y info	ormation not available
	¥ W	ATER	DEF	PTH	1 24 HOURS AFTER DRILLING:									
	_ Drilled Bv	/: Soil	Tech		Logged By: Edgar/Jobin HVJ As	soc	ciate	es, Ir	IC.	_				

LOG OF BORING B-6B

PROJECT:	Evaluation Study of Parallel Taxiway							
LOCATION:	29.101833; -95.461194							
STATION:	N/A							
OFFSET:	N/A							
SURFACE ELEVATION: N/A								

PROJECT NO.: HG2210070.1

COMPLETION DEPTH: 11 FT

DATE: 8/7/2023

	N, FT	L L	ET	2 0		_	J.	S	SAMPLER: Shelby Tube/Split Spoon	RD N TEST, FOOT	ASSING EVE	EIGHT,	RE T, %	IIT, %	.IMIT, %	% UNDRAINED SHEAR STRENGTH, X TSF U HAND PENETROMETER Z UNCONFINED COMPRESSION	UNDRAINED SHEAR STRENGTH, TSF O HAND PENETROMETER
	EVATIOI	JEPTH, I	SYMBOI	AMPLE	DRY AUGER: <u>0</u> TO <u>11</u> FT WET ROTARY: <u>N/A</u> TO <u>N/A</u> FT	TRATIOI NS PER	CENT PA	UNIT WI	MOISTU	suid Lim	STIC LIN	TICITY IN	 UNCONFINED COMPRESSION UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION 				
	EL			- ا	DESCRIPTION OF MATERIAL		PER(DRY	-0		PLA	LAST	△ TORVANE 0.5 1.0 1.5 2.0 2.5				
		0	4+ - 		Pavement: 4" Asphalt, 23" Flexible Base, 10" Lime Stabilized Clay		-										
		5			Stiff to very stiff, dark gray and brown, FAT CLAY WITH SAND (CH)	_		83	38				0				
							72.8		18	53	17	36	0				
		10				_							0				
COH HG2210070.1.GPJ 8/24/23																	
					N BORING:				N	ote: (Surve	ey info	ormation not available				
	⊥ rr T W			nt I PTF	1 24 HOURS AFTER DRILLING:												
L	Drilled By	/: <u>Soil</u>	Tech		Logged By: Edgar/Jobin HVJ Ass	ociat	es, Ir	NC.	-								

					SAMPLER TYPES					
					Thin Walled Shelby Tube	No Recove	ry 🔲 Auger			
Clay	Silt <u>Modif</u>	Sand	Gravel	\boxtimes	Split Barrel	Core				
			000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0	/	Liner Tube	Jar Sample	2			
Clayey	Silty Construction	Sandy Materials	Cemented		WATE	R LEVEL SYM	BOLS			
Asphaltic Concrete	Stabilized Base	Fill or Debris	Portland Cement Concrete		Groundv open bo Groundv drilling o	vater level after drilling rehole or piezometer vater level determined o pperations	in luring			
			SOIL GR	AIN SIZE	•					
	<u>Classificat</u> Clay	ion	<u>Partic</u>	<u>e Size</u> 02 mm		Particle Size or Sieve No. (U.S. Standard < 0.002 mm	2			
	Silt Sand Gravel Cobble Boulder		0.002 - 0 0.075 - 4 4.75 - 75 - 20 > 200	.075 mm 4.75 mm 75 mm 00 mm 0 mm		0.002 mm - #200 sie #200 sieve - #4 siev #4 sieve - 3 in. 3 in 8 in. > 8 in.	ive /e			
DENS	ІТҮ ОГ СОНЕ	SIONLES	S SOILS	со	NSISTEN		SIVE SOILS			
	Descriptive Term	Penetratio "Resistance Blows/Fo	on N" * ot	Cons	sistency	Undrained Shear Strength (tsf)	Penetration Resistance "N" * Blows/Foot			
I	Very Loose Loose Medium Dense Dense Very Dense	0 - 4 4 - 10 10 - 30 30 - 50 > 50	_	Ver S Ver F	y Soft Soft Firm Stiff y Stiff Iard	0 - 0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0	0 - 2 2 - 4 4 - 8 8 - 16 16 - 32 > 32			
		P	ENETRATION		TANCE					
3/6 50/4" 0/18"	Blows required If more than 5 Sampler pene	d to penetrate ea 50 blows are requ trated full depth	ch of three consecutiv ired, driving is discon under weight of drill ro	e 6-inch increi tinued and pei ods and hamm	ments per ASTI netration at 50 er	Y D-1586 * blows is noted				
* The N va	lue is taken as the blo	ws required to pe	enetrate the final 12 in	ches						
		TERMS	DESCRIBIN	g soil s	TRUCTU	JRE				
Slickensided	Fracture planes ap glossy, sometimes Breaks along defir	pear polished or striated	turo	Intermixed	Soll s differe stratil	ample composed of poc ent soil type and lamina fied structure is not evid	kets of ted or lent			
Inclusion	with little resistant Small pockets of d	ifferent soils, suc	h	Calcareous	Havin carbo	g appreciable quantities nate	s of calcium			
Parting	as small lenses of through a mass of Inclusion less thar	sand scattered clay 1/4 inch thick		Ferrous Nodule	Havin A sma	g appreciable quantities all mass of irregular sha	s of iron pe			
Seam	extending through Inclusion 1/4 inch	the sample to 3 inches thick			HVI	6120 S. Dairy Asl Houston, Texas 7	hford Road 7072-1010			
Layer	Inclusion greater t extending through	the sample than 3 inches thic the sample	k		ASSOCIATES	281.933.7388 Ph 281.933.7293 Fax				
Laminated	Soil sample compo partings of differe	osed of alternating nt soil type	g			USED ON BORING	G LOGS			
Stratified	Soil sample compo seams or layers of	osed of alternating f different soil typ	g e	PROJ	ECT NO.:	DRA	WING NO.:			

PROJECT NO.: HG2210070.1

PLATE A-7

APPENDIX B

SUMMARY OF LABORATORY TEST RESULTS

Company	Name:	HVJ As	ssociate	es, Inc.								
Project: Evaluation Study of Parallel Taxiway												
Location: Angleton, Texas												
Project Number: HG2210070.1												
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	% Passing #200 Sieve	Moisture content (%)	Dry Density (pcf)	Shear Strength (Pocket Pen) (tsf)				
B-1B	4					27	97	0.58				
B-1B	6							0.67				
B-1B	8	76	25	51	92.9	32		0.50				
B-1B	10							0.92				
B-2B	4.5					34	88	1.25				
B-2B	6	76	24	52	92.7	31		0.83				
B-2B	8							1.08				
B-2B	10							1.17				
B-3B	4					38	83	0.58				
B-3B	6							0.50				
B-3B	8	53	18	35	77.3	20		0.92				
B-3B	10							1.17				
B-4B	4					30	90	0.42				
B-4B	6							0.83				
B-4B	8							1.17				
B-4B	10	56	18	38	86.9	21		1.00				
B-5B	4					32	86	0.75				
B-5B	6	64	21	43	90.4	25		0.83				
B-5B	8							0.67				
B-5B	10							0.67				
B-6B	4					38	83	0.50				
B-6B	6							0.67				
B-6B	8	53	17	36	72.8	18		1.17				
B-6B	10							1.33				
Tota	.1	6	6	6	6	12	6	24				

APPENDIX C

CBR TEST RESULT

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOILS ASTM D-1883

Project: Evaluation Study of Parallel Taxiway	
--	--

Sample Location: Composite sample, Flexible Base

Liquid Limit: N/A Plas	stic Limit: N/A	L	Plasticity Index:	N/A
Method of Compaction: $\square A$	ASTM D698 ASTM D1557			
Sample Condition:	⊠ soaked	🗌 u	nsoaked	
No. of Blows:	10	25	65	
Dry Density Before Soaking (pcf)	: 109.5	114.3	123.5	

115.7 123.0

Dry Density After Soaking (pcf):	113.0	
Moisture Content:		

Before Compaction (%): Top 1-inch Layer After Soaking (%):	7.44 11.02	7.62 11.11	7.97 11.27
Swell (%):	0.15	0.09	0.04
Bearing Ratio (%): (⊠ soaked □ unsoaked)	4.17	13.30	40.03

Surcharge: 10 lbs.

	6120 S. I Houston, 281.933. 281.933.	Dairy Ashford Road Texas 77072-1010 7388 Ph 7293 Fax		
DATE: 09/06/2023	APPROVED BY: PD		PREPARED BY: RA	
CBF EVALUATION ST	TRESULTS OF PARALL	EL TAXIWAY		
PROJECT NO.:		DRAWING NO.:		
HG221007	70.1	PLATE-1		

APPENDIX D

SIEVE ANALYSIS

APPENDIX E

DCP TEST RESULTS

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fi	le Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 1-B		SAM	IPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	OLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAL	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	1	STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.1"W	l	Latitude (y):	29°05'59.9"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point belov	v surface (in.):		0.50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS										
# of Blows	Penetration (6 in. intervals)	E > E (design)?	E > 0.5 E design							
0	1.2	0	0.70		ſ					
5	7.2	5	6.70	6.4	8.4	YES	YES			
5	13.2	10	12.70	6.4	8.4	YES	YES			
9	19.2	19	18.70	12.3	12.7	YES	YES			
10	25.2	29	24.70	13.8	13.7	YES	YES			
14	31.2	43	30.70	20.1	17.4	YES	YES			
14	37.2	57	36.70	20.1	17.4	YES	YES			
					13.0	YES - Review Proof Rolling	Eavg. ≥ E design ?			

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	13.0		

Remarks:		
6" Asphalt		
33" Base		
Test Method:	Tested By:	Tested Date:

 Test Michol.
 Tested by.
 Tested Date.

 D6951
 Edgar
 09/11/2023

 Test Stamp Code:
 Omit Test:
 Completed Date: Reviewed By:

Test Stamp Code			Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized By:			Authorized Date:		

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fi	e Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 2-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiway		SPECIAL	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE/LIFT:		STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'38.9"W	1	Latitude (y):	29°6'24.2"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.	.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

	DCP DATA ANALYSIS						
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design
0	0.4	0	-0.10				
5	6.4	5	5.90	6.4	8.4	YES	YES
10	12.4	15	11.90	13.8	13.7	YES	YES
15	18.4	30	17.90	21.8	18.3	YES	YES
20	24.4	50	23.90	30.0	22.5	YES	YES
25	30.4	75	29.90	38.6	26.4	YES	YES
28	36.4	103	35.90	43.8	28.6	YES	YES
					19.7	YES - Review Proof Rolling	Eavg. ≥ E design ?

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	19.7		

Remarks:		
4.5" Asphalt		
35.5" Base		
Test Method:	Tested By:	Tested Date:
D6951	Edgar	09/11/2023

Test Stamp Cod	le:		Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized Dur			Authorized Date:		

Т

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	STM - D6951 :: Fil	e Version: 10	/21/16 07:33:30
SAMPLE ID:	Near 3-B		SAN	IPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	OLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiway		SPECIAL	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized, Clay						
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	STAT	ION:		DIS	ST. FROM CL:		
Long. (x): 95°27'38.9"W	Latitude (y):	2	29°6'24.2"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]		Water Tal	ole Depth (ft.):			
Pavement Conditions:			Depth of z	ero point belov	v surface (in.):	().50
Design Modulus (E) ksi:							

	DCP DATA ANALYSIS						
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design
0	0.5	0	0.00				
5	6.5	5	6.00	6.4	8.4	YES	YES
16	12.5	21	12.00	23.4	19.2	YES	YES
14	18.5	35	18.00	20.1	17.4	YES	YES
19	24.5	54	24.00	28.4	21.7	YES	YES
22	30.5	76	30.00	33.4	24.1	YES	YES
24	36.5	100	36.00	36.8	25.6	YES	YES
					19.4	YES - Review Proof Rolling	Eavg. ≥ E design ?

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	19.4		

Remarks:						
4.5" Asphalt						
33" Base						
Test Method:	Tested By:	Tested Date:				
D6951	Edgar	09/11/2023				
Test Method: D6951	Tested By: Edgar	Tested Da 09/11/2				

00931	Eugai			09/11/20
Test Stamp Code	:	Omit Test:	Completed Date:	Reviewed By:
1.00				

J.E.				
Locked By:	TxDOT:	District:	Area:	
Authorized By:			Authorized Date:	

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	le Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 4-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAI	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:	1	STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.2"W	l	Latitude (y):	29°6'58.6"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.	.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

	DCP DATA ANALYSIS										
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design				
0	0.9	0	0.40								
4	6.9	4	6.40	5.0	7.1	YES	YES				
9	12.9	13	12.40	12.3	12.7	YES	YES				
15	18.9	28	18.40	21.8	18.3	YES	YES				
14	24.9	42	24.40	20.1	17.4	YES	YES				
19	30.9	61	30.40	28.4	21.7	YES	YES				
19	36.9	80	36.40	28.4	21.7	YES	YES				
					16.5	YES - Review Proof Rolling	Eavg. ≥ E design ?				

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	16.5		

Remarks:		
6.5" Asphalt		
30.5" Base		
Test Method:	Tested By:	Tested Date:
D6951	Edgar	09/11/2023

Test Stamp Code			Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized By:			Authorized Date:	•	

Т

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook				A	ASTM - D6951 :: Fil	e Version: 1	0/21/16 07:33:30
SAMPLE ID:	Near 5-B		SAI	MPLED DATE:	08/07/2023		
TEST NUMBER:			LE	TTING DATE:			
SAMPLE STATUS:			CONTR	ROLLING CSJ:			
COUNTY:	Brazoria			SPEC YEAR:	2014		
SAMPLED BY:	Edgar			SPEC ITEM:			
SAMPLE LOCATION:	Parallel Taxiwa	iy	SPECIAI	PROVISION:			
MATERIAL CODE:				GRADE:			
MATERIAL NAME:	Lime Stabilized	l, Clay					
PRODUCER:							
AREA ENGINEER:			PROJEC	T MANAGER:			
COURSE\LIFT:		STATION:		DIS	ST. FROM CL:		
Long. (x): 95°27'39.3"W		Latitude (y):	29°7'5.4"N		Elev. (z):		
Material Classification:	All other types			Weather:	Cloudy		
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):			
Pavement Conditions:			Depth of z	ero point below	v surface (in.):		0.50
Design Modulus (E) ksi:							

DCP DATA ANALYSIS										
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design			
0	1.2	0	0.70							
6	7.2	6	6.70	7.8	9.5	YES	YES			
8	13.2	14	12.70	10.8	11.7	YES	YES			
13	19.2	27	18.70	18.5	16.5	YES	YES			
17	25.2	44	24.70	25.0	20.0	YES	YES			
19	31.2	63	30.70	28.4	21.7	YES	YES			
19	37.2	82	36.70	28.4	21.7	YES	YES			
					16.9	YES - Review Proof Rolling	Eavg. ≥ E design ?			

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	16.9		

Tested By:	Tested Date:
Edgar	09/11/2023
	Tested By: Edgar

Test Stamp Cod	e:		Omit Test:		Completed Date:	Reviewed By:
J.E.						
Locked By:	TxDOT:	District:	Area:			
Authorized By:			Authorized Date	c	-	

1

TEXAS DEPARTMENT OF TRANSPORTATION

Dynamic Cone Penetrometer (DCP) Data Analysis ASTM - D6951

Refresh Workbook		ASTM	- D6951	-	ASTM - D6951 :: Fil	le Version: 10/21/16 07:33:
SAMPLE ID:	Near 6-B		SA	MPLED DATE:	08/07/2023	
TEST NUMBER:	1		LE	TTING DATE:		
SAMPLE STATUS:			CONTR	ROLLING CSJ:		
COUNTY:	Brazoria			SPEC YEAR:	2014	
SAMPLED BY:	Edgar			SPEC ITEM:		
SAMPLE LOCATION:	Parallel Taxiwa	у	SPECIA	PROVISION:		
MATERIAL CODE:				GRADE:		
MATERIAL NAME:	Lime Stabilized	, Clay				
PRODUCER:						
AREA ENGINEER:			PROJEC	T MANAGER:		
COURSE/LIET:		STATION.		DIS	ST. FROM CL	
Long. (x): 95°27'40.3"W		Latitude (y):	29°6'6.5"N		Elev. (z):	
Material Classification:	All other types			Weather:	Cloudy	
Hammer Weight:	8-KG [17.6-lbs.]	Water Ta	ble Depth (ft.):		
Pavement Conditions:			Depth of z	ero point belov	v surface (in.):	0.50
Design Modulus (E) ksi:						

	DCP DATA ANALYSIS										
# of Blows	Penetration (6 in. intervals)	Cumulative Blows	Cumulative Penetration	CBR	E (ksi)	E > E (design)?	E > 0.5 E design				
0	4.8	0	4.30								
4	10.8	4	10.30	5.0	7.1	YES	YES				
5	16.8	9	16.30	6.4	8.4	YES	YES				
9	22.8	18	22.30	12.3	12.7	YES	YES				
15	28.8	33	28.30	21.8	18.3	YES	YES				
20	34.8	53	34.30	30.0	22.5	YES	YES				
9	40.8	62	40.30	12.3	12.7	YES	YES				
					13.6	YES - Review Proof Rolling	Eavg. ≥ E design ?				

.

Layer	Eavg.	E (design)	E avg. ≥ E (design)
	13.6		

Tested By:	Tested Date:
Edgar	09/11/2023
	Tested By: Edgar

Test Stamp Code:			Omit Test:	Completed Date:	Reviewed By:
J.E.					
Locked By:	TxDOT:	District:	Area:		
Authorized By:			Authorized Date:		

ATTACHMENT 4

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 1

Section: Exist Section 1

This file name = PCR Results for HMA on Flexible 2023-09-18 15:30:58

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Exist Section 1 in job file: 2212ANGLE - Section 1.JOB.xml

Units = US Customary

Analysis Type: HMA on Flexible

Subgrade Modulus =8,270psi (Subgrade Category is D)

Evaluation Pavement Thickness = 13.5 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 121.570

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,656
2	S-10	10,000	95.00	50	200	1,166
3	S-12.5	12,500	95.00	50	110	684
4	S-15	15,000	95.00	50	13	85
5	S-20	20,000	95.00	75	44	279
6	S-25	25,000	95.00	100	2	12
7	D-15	15,000	95.00	55	113	1,053
8	D-20	20,000	95.00	65	16	157
9	D-25	25,000	95.00	75	36	388
10	D-30	30,000	95.00	85	26	285
11	D-40	40,000	95.00	90	73	834
12	D-50	50,000	95.00	80	2	25
13	D-75	75,000	95.00	110	10	130
14	D-100	100,000	95.00	140	860	11,230

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/D
1	D-100	861	57,935	19.1	151.7

Results Table 3. HMA on Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (D)	ACR/F/D
1	S-5	5,000	95.00	50	5.1	17
2	S-10	10,000	95.00	50	8.7	35.1
3	S-12.5	12,500	95.00	50	9.9	43.8
4	S-15	15,000	95.00	50	11.0	52.4
5	S-20	20,000	95.00	75	13.6	76.5
6	S-25	25,000	95.00	100	15.7	100
7	D-15	15,000	95.00	55	9.6	41.1
8	D-20	20,000	95.00	65	11.7	57.9
9	D-25	25,000	95.00	75	12.4	64.4
10	D-30	30,000	95.00	85	14.4	84.8
11	D-40	40,000	95.00	90	17.7	126.8
12	D-50	50,000	95.00	80	18.1	132
13	D-75	75,000	95.00	110	22.3	231.3
14	D-100	100,000	95.00	140	25.5	321.8

Federal Aviation Administration FAARFIELD 2.0 Form 5010

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 1

Section: Exist Section 1

Gross Weight (In THSDS)

35 S	39
36 D	55
37 2D	0
38 2D/2D2	0

39 PCR	152/F/D/X/T
--------	-------------

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 1

Section: Strengthen Option 1

Analysis Type: New Flexible

Last Run: Thickness Design 2023-09-18 17:11:46

Design Life = 20 Years

Total thickness to the top of the subgrade = 21.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Surface	4.0	200,000	0.35	0
2	P-304 Cement Treated Base	5.0	500,000	0.2	0
3	P-209 Crushed Aggregate	12.0	32,208	0.35	0
4	Subgrade	0	8,270	0.35	0

Airplane Information

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Additional Airplane Information

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.94
2	S-10	0.00	0.00	2.71
3	S-12.5	0.00	0.00	2.62
4	S-15	0.00	0.00	2.55
5	S-20	0.00	0.00	2.6
6	S-25	0.00	0.00	2.62
7	D-15	0.00	0.00	2.11
8	D-20	0.00	0.00	2.04
9	D-25	0.00	0.00	1.91
10	D-30	0.00	0.00	1.9
11	D-40	0.00	0.00	1.87
12	D-50	0.00	0.00	1.66
13	D-75	0.00	0.00	1.62
14	D-100	1.00	1.00	1.57

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	7.65
2	S-10	0.00	0.00	6.13
3	S-12.5	0.00	0.00	5.68
4	S-15	0.00	0.00	5.33
5	S-20	0.00	0.00	5.56
6	S-25	0.00	0.00	5.68
7	D-15	0.00	0.00	3.56
8	D-20	0.00	0.00	3.41
9	D-25	0.00	0.00	3.36
10	D-30	0.00	0.00	3.29
11	D-40	0.00	0.00	3.05
12	D-50	0.00	0.00	2.74
13	D-75	0.00	0.00	2.67
14	D-100	0.00	0.00	2.66

User Is responsible For checking frost protection requirements.

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 1

Section: Strengthen Option 1

This file name = PCR Results for New Flexible 2023-09-18 17:21:09

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Strengthen Option 1 in job file: 2212ANGLE - Section 1.JOB.xml

Units = US Customary

Analysis Type: New Flexible

Subgrade Modulus =8,270psi (Subgrade Category is D)

Evaluation Pavement Thickness = 21.0 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 1.000

No aircraft have 4 or more wheels per gear.

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,333
2	S-10	10,000	95.00	50	200	978
3	S-12.5	12,500	95.00	50	110	581
4	S-15	15,000	95.00	50	13	73
5	S-20	20,000	95.00	75	44	238
6	S-25	25,000	95.00	100	2	11
7	D-15	15,000	95.00	55	113	952
8	D-20	20,000	95.00	65	16	141
9	D-25	25,000	95.00	75	36	322
10	D-30	30,000	95.00	85	26	237
11	D-40	40,000	95.00	90	73	719
12	D-50	50,000	95.00	80	2	22
13	D-75	75,000	95.00	110	10	112
14	D-100	100,000	95.00	140	860	9,717

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/D
1	D-100	860	100,000	25.5	321.8

Results Table 3. New Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (D)	ACR/F/D
1	S-5	5,000	95.00	50	5.1	17
2	S-10	10,000	95.00	50	8.7	35.1
3	S-12.5	12,500	95.00	50	9.9	43.8
4	S-15	15,000	95.00	50	11.0	52.4
5	S-20	20,000	95.00	75	13.6	76.5
6	S-25	25,000	95.00	100	15.7	100
7	D-15	15,000	95.00	55	9.6	41.1
8	D-20	20,000	95.00	65	11.7	57.9
9	D-25	25,000	95.00	75	12.4	64.4
10	D-30	30,000	95.00	85	14.4	84.8
11	D-40	40,000	95.00	90	17.7	126.8
12	D-50	50,000	95.00	80	18.1	132
13	D-75	75,000	95.00	110	22.3	231.3
14	D-100	100,000	95.00	140	25.5	321.8

Federal Aviation Administration FAARFIELD 2.0 Form 5010

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 1

Section: Strengthen Option 1

Gross Weight (In THSDS)

35 S	79
36 D	100
37 2D	157
38 2D/2D2	0

39 PCR	322/F/D/X/T
--------	-------------

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 1

Section: Asphalt OL Option 2

This file name = PCR Results for HMA on Flexible 2023-09-18 17:35:31

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Asphalt OL Option 2 in job file: 2212ANGLE - Section 1.JOB.xml

Units = US Customary

Analysis Type: HMA on Flexible

Subgrade Modulus =8,270psi (Subgrade Category is D)

Evaluation Pavement Thickness = 18.5 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.830

Results Table 1. Input Traffic Data

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	2,295
2	S-10	10,000	95.00	50	200	1,539
3	S-12.5	12,500	95.00	50	110	888
4	S-15	15,000	95.00	50	13	109
5	S-20	20,000	95.00	75	44	360
6	S-25	25,000	95.00	100	2	16
7	D-15	15,000	95.00	55	113	1,252
8	D-20	20,000	95.00	65	16	185
9	D-25	25,000	95.00	75	36	457
10	D-30	30,000	95.00	85	26	332
11	D-40	40,000	95.00	90	73	956
12	D-50	50,000	95.00	80	2	31
13	D-75	75,000	95.00	110	10	158
14	D-100	100,000	95.00	140	860	14,183
Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/D
1	D-100	860	101,192	25.7	326.9

Results Table 3. HMA on Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (D)	ACR/F/D
1	S-5	5,000	95.00	50	5.1	16.9
2	S-10	10,000	95.00	50	8.7	35.1
3	S-12.5	12,500	95.00	50	9.9	43.8
4	S-15	15,000	95.00	50	11.0	52.3
5	S-20	20,000	95.00	75	13.6	76.5
6	S-25	25,000	95.00	100	15.7	100
7	D-15	15,000	95.00	55	9.6	41.1
8	D-20	20,000	95.00	65	11.7	57.9
9	D-25	25,000	95.00	75	12.4	64.4
10	D-30	30,000	95.00	85	14.4	84.8
11	D-40	40,000	95.00	90	17.7	126.8
12	D-50	50,000	95.00	80	18.1	132
13	D-75	75,000	95.00	110	22.3	231.3
14	D-100	100,000	95.00	140	25.5	321.8

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 1

Section: Asphalt OL Option 2

35 S	80
36 D	102
37 2D	159
38 2D/2D2	0

39 PCR	327/F/D/X/T
--------	-------------

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 1

Section: Concrete Section Option 3

Analysis Type: New Rigid

Last Run: Thickness Design 2023-09-18 18:16:50

Design Life = 20 Years

Total thickness to the top of the subgrade = 22.2in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-501 PCC Surface	10.2	4,000,000	0.15	650
2	User Defined	12.0	150,000	0.35	0
3	Subgrade	0	8,270	0.4	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	12.6
2	S-10	0.00	0.00	8.92
3	S-12.5	0.00	0.00	7.99
4	S-15	0.00	0.00	7.3
5	S-20	0.00	0.00	7.74
6	S-25	0.00	0.00	7.99
7	D-15	0.00	0.00	5.48
8	D-20	0.00	0.00	5.18
9	D-25	0.00	0.00	5.03
10	D-30	0.00	0.00	4.89
11	D-40	0.00	0.00	4.36
12	D-50	0.00	0.00	3.73
13	D-75	0.00	0.00	3.6
14	D-100	1.00	1.00	3.55

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 1

Section: Concrete Section Option 3

35 S	87
36 D	105
37 2D	172
38 2D/2D2	0

39 PCR	333/R/D/W/T
--------	-------------

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Exist Section 2

Analysis Type: New Flexible

Last Run: Life Analysis 2023-09-20 10:20:38

Calculated Life = 2,231.1 Years

Total thickness to the top of the subgrade = 27.9in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Surface	4.7	200,000	0.35	0
2	User Defined	8.0	80,900	0.35	0
3	User Defined	15.2	15,200	0.35	0
4	Subgrade	0	10,500	0.35	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.39
2	S-10	0.00	0.00	2.24
3	S-12.5	0.00	0.00	2.18
4	S-15	0.00	0.00	2.14
5	S-20	0.00	0.00	2.17
6	S-25	0.00	0.00	2.18
7	D-15	0.00	0.00	1.84
8	D-20	0.00	0.00	1.79
9	D-25	0.00	0.00	1.69
10	D-30	0.00	0.00	1.69
11	D-40	0.00	0.00	1.66
12	D-50	0.00	0.00	1.51
13	D-75	0.00	0.00	1.48
14	D-100	0.00	0.00	1.44

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	7.16
2	S-10	0.00	0.00	5.82
3	S-12.5	0.00	0.00	5.41
4	S-15	0.00	0.00	5.09
5	S-20	0.00	0.00	5.30
6	S-25	0.00	0.00	5.41
7	D-15	0.00	0.00	3.46
8	D-20	0.00	0.00	3.26
9	D-25	0.00	0.00	3.17
10	D-30	0.00	0.00	3.12
11	D-40	0.00	0.00	2.89
12	D-50	0.00	0.00	2.62
13	D-75	0.00	0.00	2.56
14	D-100	0.01	0.01	2.54

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Exist Section 2

This file name = PCR Results for New Flexible 2023-09-20 10:21:44

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Exist Section 2 in job file: 2212ANGLE - Section 2.JOB.xml

Units = US Customary

Analysis Type: New Flexible

Subgrade Modulus =10,500psi (Subgrade Category is C)

Evaluation Pavement Thickness = 27.9 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.000

No aircraft have 4 or more wheels per gear.

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,424
2	S-10	10,000	95.00	50	200	1,031
3	S-12.5	12,500	95.00	50	110	610
4	S-15	15,000	95.00	50	13	77
5	S-20	20,000	95.00	75	44	249
6	S-25	25,000	95.00	100	2	11
7	D-15	15,000	95.00	55	113	981
8	D-20	20,000	95.00	65	16	147
9	D-25	25,000	95.00	75	36	340
10	D-30	30,000	95.00	85	26	250
11	D-40	40,000	95.00	90	73	757
12	D-50	50,000	95.00	80	2	23
13	D-75	75,000	95.00	110	10	117
14	D-100	100,000	95.00	140	860	10,144

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/C
1	D-100	860	130,843	24.0	405.0

Results Table 3. New Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/F/C
1	S-5	5,000	95.00	50	4.6	15.7
2	S-10	10,000	95.00	50	6.4	30.3
3	S-12.5	12,500	95.00	50	7.4	38
4	S-15	15,000	95.00	50	8.3	45.6
5	S-20	20,000	95.00	75	10.7	71.3
6	S-25	25,000	95.00	100	12.5	95.9
7	D-15	15,000	95.00	55	6.4	30.5
8	D-20	20,000	95.00	65	8.2	44.8
9	D-25	25,000	95.00	75	8.9	51.5
10	D-30	30,000	95.00	85	10.3	67
11	D-40	40,000	95.00	90	13.0	103.6
12	D-50	50,000	95.00	80	13.3	108.1
13	D-75	75,000	95.00	110	17.8	189.5
14	D-100	100,000	95.00	140	20.6	272.5

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 2

Section: Exist Section 2

35 S	100
36 D	153
37 2D	225
38 2D/2D2	644

39 PCR 4	405/F/C/X/T
----------	-------------

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Strengthen CTB Option 1

Analysis Type: New Flexible

Last Run: Life Analysis 2023-09-20 10:26:21

Calculated Life = 12,163.8 Years

Total thickness to the top of the subgrade = 27.2in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Surface	4.0	200,000	0.35	0
2	P-304 Cement Treated Base	5.0	500,000	0.2	0
3	P-154 Uncrushed Aggregate	18.2	19,112	0.35	0
4	Subgrade	0	10,500	0.35	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.43
2	S-10	0.00	0.00	2.28
3	S-12.5	0.00	0.00	2.22
4	S-15	0.00	0.00	2.17
5	S-20	0.00	0.00	2.2
6	S-25	0.00	0.00	2.22
7	D-15	0.00	0.00	1.86
8	D-20	0.00	0.00	1.81
9	D-25	0.00	0.00	1.71
10	D-30	0.00	0.00	1.71
11	D-40	0.00	0.00	1.68
12	D-50	0.00	0.00	1.52
13	D-75	0.00	0.00	1.49
14	D-100	0.00	0.00	1.45

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	7.65
2	S-10	0.00	0.00	6.13
3	S-12.5	0.00	0.00	5.68
4	S-15	0.00	0.00	5.33
5	S-20	0.00	0.00	5.56
6	S-25	0.00	0.00	5.68
7	D-15	0.00	0.00	3.56
8	D-20	0.00	0.00	3.41
9	D-25	0.00	0.00	3.36
10	D-30	0.00	0.00	3.29
11	D-40	0.00	0.00	3.05
12	D-50	0.00	0.00	2.74
13	D-75	0.00	0.00	2.67
14	D-100	0.00	0.00	2.66

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Strengthen CTB Option 1

This file name = PCR Results for New Flexible 2023-09-20 10:27:11

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Strengthen CTB Option 1 in job file: 2212ANGLE - Section 2.JOB.xml

Units = US Customary

Analysis Type: New Flexible

Subgrade Modulus =10,500psi (Subgrade Category is C)

Evaluation Pavement Thickness = 27.2 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.000

No aircraft have 4 or more wheels per gear.

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,333
2	S-10	10,000	95.00	50	200	978
3	S-12.5	12,500	95.00	50	110	581
4	S-15	15,000	95.00	50	13	73
5	S-20	20,000	95.00	75	44	238
6	S-25	25,000	95.00	100	2	11
7	D-15	15,000	95.00	55	113	952
8	D-20	20,000	95.00	65	16	141
9	D-25	25,000	95.00	75	36	322
10	D-30	30,000	95.00	85	26	237
11	D-40	40,000	95.00	90	73	719
12	D-50	50,000	95.00	80	2	22
13	D-75	75,000	95.00	110	10	112
14	D-100	100,000	95.00	140	860	9,717

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/C
1	D-100	860	136,738	24.7	430.7

Results Table 3. New Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/F/C
1	S-5	5,000	95.00	50	4.6	15.7
2	S-10	10,000	95.00	50	6.4	30.3
3	S-12.5	12,500	95.00	50	7.4	38
4	S-15	15,000	95.00	50	8.3	45.6
5	S-20	20,000	95.00	75	10.7	71.3
6	S-25	25,000	95.00	100	12.5	95.9
7	D-15	15,000	95.00	55	6.4	30.5
8	D-20	20,000	95.00	65	8.2	44.8
9	D-25	25,000	95.00	75	8.9	51.5
10	D-30	30,000	95.00	85	10.3	67
11	D-40	40,000	95.00	90	13.0	103.6
12	D-50	50,000	95.00	80	13.3	108.1
13	D-75	75,000	95.00	110	17.8	189.5
14	D-100	100,000	95.00	140	20.6	272.5

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 2

Section: Strengthen CTB Option 1

35 S	106
36 D	161
37 2D	238
38 2D/2D2	671

39 PCR	431/F/C/X/T
--------	-------------

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Strengthen Recycling Option 2

Analysis Type: New Flexible

Last Run: Life Analysis 2023-09-20 10:29:30

Calculated Life = 6,118.2 Years

Total thickness to the top of the subgrade = 27.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Surface	4.0	200,000	0.35	0
2	User Defined	12.0	75,000	0.35	0
3	P-154 Uncrushed Aggregate	11.0	17,137	0.35	0
4	Subgrade	0	10,500	0.35	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.45
2	S-10	0.00	0.00	2.29
3	S-12.5	0.00	0.00	2.23
4	S-15	0.00	0.00	2.18
5	S-20	0.00	0.00	2.21
6	S-25	0.00	0.00	2.23
7	D-15	0.00	0.00	1.87
8	D-20	0.00	0.00	1.82
9	D-25	0.00	0.00	1.72
10	D-30	0.00	0.00	1.71
11	D-40	0.00	0.00	1.69
12	D-50	0.00	0.00	1.52
13	D-75	0.00	0.00	1.5
14	D-100	0.00	0.00	1.46

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	7.65
2	S-10	0.00	0.00	6.13
3	S-12.5	0.00	0.00	5.68
4	S-15	0.00	0.00	5.33
5	S-20	0.00	0.00	5.56
6	S-25	0.00	0.00	5.68
7	D-15	0.00	0.00	3.56
8	D-20	0.00	0.00	3.41
9	D-25	0.00	0.00	3.36
10	D-30	0.00	0.00	3.29
11	D-40	0.00	0.00	3.05
12	D-50	0.00	0.00	2.74
13	D-75	0.00	0.00	2.67
14	D-100	0.00	0.00	2.66

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Strengthen Recycling Option 2

This file name = PCR Results for New Flexible 2023-09-20 10:30:14

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Strengthen Recycling Option 2 in job file: 2212ANGLE - Section 2.JOB.xml

Units = US Customary

Analysis Type: New Flexible

Subgrade Modulus =10,500psi (Subgrade Category is C)

Evaluation Pavement Thickness = 27.0 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.000

No aircraft have 4 or more wheels per gear.

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,333
2	S-10	10,000	95.00	50	200	978
3	S-12.5	12,500	95.00	50	110	581
4	S-15	15,000	95.00	50	13	73
5	S-20	20,000	95.00	75	44	238
6	S-25	25,000	95.00	100	2	11
7	D-15	15,000	95.00	55	113	952
8	D-20	20,000	95.00	65	16	141
9	D-25	25,000	95.00	75	36	322
10	D-30	30,000	95.00	85	26	237
11	D-40	40,000	95.00	90	73	719
12	D-50	50,000	95.00	80	2	22
13	D-75	75,000	95.00	110	10	112
14	D-100	100,000	95.00	140	860	9,717

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/C
1	D-100	860	134,688	24.5	421.8

Results Table 3. New Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/F/C
1	S-5	5,000	95.00	50	4.6	15.7
2	S-10	10,000	95.00	50	6.4	30.3
3	S-12.5	12,500	95.00	50	7.4	38
4	S-15	15,000	95.00	50	8.3	45.6
5	S-20	20,000	95.00	75	10.7	71.3
6	S-25	25,000	95.00	100	12.5	95.9
7	D-15	15,000	95.00	55	6.4	30.5
8	D-20	20,000	95.00	65	8.2	44.8
9	D-25	25,000	95.00	75	8.9	51.5
10	D-30	30,000	95.00	85	10.3	67
11	D-40	40,000	95.00	90	13.0	103.6
12	D-50	50,000	95.00	80	13.3	108.1
13	D-75	75,000	95.00	110	17.8	189.5
14	D-100	100,000	95.00	140	20.6	272.5

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 2

Section: Strengthen Recycling Option 2

35 S	104
36 D	158
37 2D	233
38 2D/2D2	662

39 PCR	422/F/C/X/T
--------	-------------

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Asphalt OL Option 3

Analysis Type: New Flexible

Last Run: Life Analysis 2023-09-20 10:31:54

Calculated Life = 496.2 Years

Total thickness to the top of the subgrade = 27.2in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Surface	4.0	200,000	0.35	0
2	User Defined	8.0	80,950	0.35	0
3	User Defined	15.2	15,190	0.35	0
4	Subgrade	0	10,500	0.35	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.43
2	S-10	0.00	0.00	2.28
3	S-12.5	0.00	0.00	2.22
4	S-15	0.00	0.00	2.17
5	S-20	0.00	0.00	2.2
6	S-25	0.00	0.00	2.22
7	D-15	0.00	0.00	1.86
8	D-20	0.00	0.00	1.81
9	D-25	0.00	0.00	1.71
10	D-30	0.00	0.00	1.71
11	D-40	0.00	0.00	1.68
12	D-50	0.00	0.00	1.52
13	D-75	0.00	0.00	1.49
14	D-100	0.00	0.00	1.45

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	7.65
2	S-10	0.00	0.00	6.13
3	S-12.5	0.00	0.00	5.68
4	S-15	0.00	0.00	5.33
5	S-20	0.00	0.00	5.56
6	S-25	0.00	0.00	5.68
7	D-15	0.00	0.00	3.56
8	D-20	0.00	0.00	3.41
9	D-25	0.00	0.00	3.36
10	D-30	0.00	0.00	3.29
11	D-40	0.00	0.00	3.05
12	D-50	0.00	0.00	2.74
13	D-75	0.00	0.00	2.67
14	D-100	0.00	0.00	2.66

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Asphalt OL Option 3

This file name = PCR Results for New Flexible 2023-09-20 10:33:03

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Asphalt OL Option 3 in job file: 2212ANGLE - Section 2.JOB.xml

Units = US Customary

Analysis Type: New Flexible

Subgrade Modulus =10,500psi (Subgrade Category is C)

Evaluation Pavement Thickness = 27.2 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.000

No aircraft have 4 or more wheels per gear.

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,333
2	S-10	10,000	95.00	50	200	978
3	S-12.5	12,500	95.00	50	110	581
4	S-15	15,000	95.00	50	13	73
5	S-20	20,000	95.00	75	44	238
6	S-25	25,000	95.00	100	2	11
7	D-15	15,000	95.00	55	113	952
8	D-20	20,000	95.00	65	16	141
9	D-25	25,000	95.00	75	36	322
10	D-30	30,000	95.00	85	26	237
11	D-40	40,000	95.00	90	73	719
12	D-50	50,000	95.00	80	2	22
13	D-75	75,000	95.00	110	10	112
14	D-100	100,000	95.00	140	860	9,717

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/C
1	D-100	860	123,551	23.2	373.1

Results Table 3. New Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/F/C
1	S-5	5,000	95.00	50	4.6	15.7
2	S-10	10,000	95.00	50	6.4	30.3
3	S-12.5	12,500	95.00	50	7.4	38
4	S-15	15,000	95.00	50	8.3	45.6
5	S-20	20,000	95.00	75	10.7	71.3
6	S-25	25,000	95.00	100	12.5	95.9
7	D-15	15,000	95.00	55	6.4	30.5
8	D-20	20,000	95.00	65	8.2	44.8
9	D-25	25,000	95.00	75	8.9	51.5
10	D-30	30,000	95.00	85	10.3	67
11	D-40	40,000	95.00	90	13.0	103.6
12	D-50	50,000	95.00	80	13.3	108.1
13	D-75	75,000	95.00	110	17.8	189.5
14	D-100	100,000	95.00	140	20.6	272.5

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 2

Section: Asphalt OL Option 3

35 S	93
36 D	139
37 2D	209
38 2D/2D2	0

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Concrete Section Option 4

Analysis Type: New Rigid

Last Run: Thickness Design 2023-09-20 10:48:05

Design Life = 20 Years

Total thickness to the top of the subgrade = 26.9in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-501 PCC Surface	9.9	4,000,000	0.15	650
2	User Defined	12.0	150,000	0.35	0
3	User Defined	5.0	15,200	0.35	0
4	Subgrade	0	10,500	0.4	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	12.6
2	S-10	0.00	0.00	8.92
3	S-12.5	0.00	0.00	7.99
4	S-15	0.00	0.00	7.3
5	S-20	0.00	0.00	7.74
6	S-25	0.00	0.00	7.99
7	D-15	0.00	0.00	5.48
8	D-20	0.00	0.00	5.18
9	D-25	0.00	0.00	5.03
10	D-30	0.00	0.00	4.89
11	D-40	0.00	0.00	4.36
12	D-50	0.00	0.00	3.73
13	D-75	0.00	0.00	3.6
14	D-100	1.00	1.00	3.55

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Concrete Section Option 4

Analysis Type: New Rigid

Last Run: Life Analysis 2023-09-20 11:00:11

Calculated Life = 24.2 Years

Total thickness to the top of the subgrade = 27.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-501 PCC Surface	10.0	4,000,000	0.15	650
2	User Defined	12.0	150,000	0.35	0
3	User Defined	5.0	15,200	0.35	0
4	Subgrade	0	10,500	0.4	0

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	12.6
2	S-10	0.00	0.00	8.92
3	S-12.5	0.00	0.00	7.99
4	S-15	0.00	0.00	7.3
5	S-20	0.00	0.00	7.74
6	S-25	0.00	0.00	7.99
7	D-15	0.00	0.00	5.48
8	D-20	0.00	0.00	5.18
9	D-25	0.00	0.00	5.03
10	D-30	0.00	0.00	4.89
11	D-40	0.00	0.00	4.36
12	D-50	0.00	0.00	3.73
13	D-75	0.00	0.00	3.6
14	D-100	0.77	0.77	3.55

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 2

Section: Concrete Section Option 4

This file name = PCR Results for New Rigid 2023-09-20 11:17:14

Evaluation pavement type is rigid and design program is FAARFIELD.

Section name: Concrete Section Option 4 in job file: 2212ANGLE - Section 2.JOB.xml

Units = US Customary

Analysis Type: New Rigid

Subgrade Modulus =10,500psi (Subgrade Category is C)

Evaluation Pavement Thickness = 27.0 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.770

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	810
2	S-10	10,000	95.00	50	200	672
3	S-12.5	12,500	95.00	50	110	413
4	S-15	15,000	95.00	50	13	53
5	S-20	20,000	95.00	75	44	171
6	S-25	25,000	95.00	100	2	8
7	D-15	15,000	95.00	55	113	618
8	D-20	20,000	95.00	65	16	93
9	D-25	25,000	95.00	75	36	215
10	D-30	30,000	95.00	85	26	160
11	D-40	40,000	95.00	90	73	502
12	D-50	50,000	95.00	80	2	16
13	D-75	75,000	95.00	110	10	83
14	D-100	100,000	95.00	140	860	7,259

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/R/C
1	D-100	852	101,487	10.4	311.2

Results Table 3. New Rigid ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/R/C
1	S-5	5,000	95.00	50	2.0	10.4
2	S-10	10,000	95.00	50	2.4	19.8
3	S-12.5	12,500	95.00	50	2.8	26.1
4	S-15	15,000	95.00	50	3.2	32.3
5	S-20	20,000	95.00	75	4.4	57.6
6	S-25	25,000	95.00	100	5.3	83.1
7	D-15	15,000	95.00	55	3.0	28.3
8	D-20	20,000	95.00	65	3.8	43.9
9	D-25	25,000	95.00	75	4.3	55.8
10	D-30	30,000	95.00	85	5.0	73.9
11	D-40	40,000	95.00	90	6.1	107.8
12	D-50	50,000	95.00	80	6.4	120.7
13	D-75	75,000	95.00	110	8.6	212.8
14	D-100	100,000	95.00	140	10.4	305.8

Federal Aviation Administration FAARFIELD 2.0 Form 5010

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 2

Section: Concrete Section Option 4

Gross Weight (In THSDS)

35 S	84
36 D	102
37 2D	178
38 2D/2D2	0

39 PCR	311/R/C/W/T
--------	-------------

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 3

Section: Exist Section 3

Analysis Type: HMA on Flexible

Last Run: Life Analysis 2023-09-19 09:51:01

Calculated Life = 28,888.5 Years

Total thickness to the top of the subgrade = 25.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-401/P-403 HMA Overlay	2.0	200,000	0.35	0
2	User Defined	4.5	279,870	0.35	0
3	User Defined	18.5	62,000	0.35	0
4	Subgrade	0	9,700	0.35	0

Airplane Information

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Additional Airplane Information

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	2.59
2	S-10	0.00	0.00	2.41
3	S-12.5	0.00	0.00	2.34
4	S-15	0.00	0.00	2.29
5	S-20	0.00	0.00	2.33
6	S-25	0.00	0.00	2.34
7	D-15	0.00	0.00	1.94
8	D-20	0.00	0.00	1.88
9	D-25	0.00	0.00	1.78
10	D-30	0.00	0.00	1.77
11	D-40	0.00	0.00	1.74
12	D-50	0.00	0.00	1.56
13	D-75	0.00	0.00	1.53
14	D-100	0.00	0.00	1.49

Overlay HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	9.53
2	S-10	0.00	0.00	7.27
3	S-12.5	0.00	0.00	6.64
4	S-15	0.00	0.00	6.16
5	S-20	0.00	0.00	6.47
6	S-25	0.00	0.00	6.64
7	D-15	0.00	0.00	4.30
8	D-20	0.00	0.00	4.11
9	D-25	0.00	0.00	4.03
10	D-30	0.00	0.00	3.94
11	D-40	0.00	0.00	3.59
12	D-50	0.00	0.00	3.16
13	D-75	0.00	0.00	3.06
14	D-100	0.00	0.00	3.04

HMA CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	6.16
2	S-10	0.00	0.00	5.14
3	S-12.5	0.00	0.00	4.82
4	S-15	0.00	0.00	4.57
5	S-20	0.00	0.00	4.73
6	S-25	0.00	0.00	4.82
7	D-15	0.00	0.00	3.22
8	D-20	0.00	0.00	3.05
9	D-25	0.00	0.00	2.78
10	D-30	0.00	0.00	2.74
11	D-40	0.00	0.00	2.63
12	D-50	0.00	0.00	2.35
13	D-75	0.00	0.00	2.30
14	D-100	0.00	0.00	2.30

User Is responsible For checking frost protection requirements.

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 3

Section: Exist Section 3

This file name = PCR Results for HMA on Flexible 2023-09-19 09:39:08

Evaluation pavement type is flexible and design program is FAARFIELD.

Section name: Exist Section 3 in job file: 2212ANGLE - Section 3.JOB.xml

Units = US Customary

Analysis Type: HMA on Flexible

Subgrade Modulus =9,700psi (Subgrade Category is C)

Evaluation Pavement Thickness = 25.0 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 0.000

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	1,656
2	S-10	10,000	95.00	50	200	1,166
3	S-12.5	12,500	95.00	50	110	684
4	S-15	15,000	95.00	50	13	85
5	S-20	20,000	95.00	75	44	279
6	S-25	25,000	95.00	100	2	12
7	D-15	15,000	95.00	55	113	1,053
8	D-20	20,000	95.00	65	16	157
9	D-25	25,000	95.00	75	36	388
10	D-30	30,000	95.00	85	26	285
11	D-40	40,000	95.00	90	73	834
12	D-50	50,000	95.00	80	2	25
13	D-75	75,000	95.00	110	10	130
14	D-100	100,000	95.00	140	860	11,230

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/F/C
1	D-100	860	142,183	25.3	454.5

Results Table 3. HMA on Flexible ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/F/C
1	S-5	5,000	95.00	50	4.6	15.7
2	S-10	10,000	95.00	50	6.4	30.3
3	S-12.5	12,500	95.00	50	7.4	38
4	S-15	15,000	95.00	50	8.3	45.6
5	S-20	20,000	95.00	75	10.7	71.3
6	S-25	25,000	95.00	100	12.5	95.9
7	D-15	15,000	95.00	55	6.4	30.5
8	D-20	20,000	95.00	65	8.2	44.8
9	D-25	25,000	95.00	75	8.9	51.5
10	D-30	30,000	95.00	85	10.3	67
11	D-40	40,000	95.00	90	13.0	103.6
12	D-50	50,000	95.00	80	13.3	108.1
13	D-75	75,000	95.00	110	17.8	189.5
14	D-100	100,000	95.00	140	20.6	272.5

Federal Aviation Administration FAARFIELD 2.0 Form 5010

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 3

Section: Exist Section 3

Gross Weight (In THSDS)

35 S	111
36 D	169
37 2D	250
38 2D/2D2	697

|--|

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 3

Section: Concete Option 1

Analysis Type: New Rigid

Last Run: Life Analysis 2023-09-19 10:10:13

Calculated Life = 33.7 Years

Total thickness to the top of the subgrade = 25.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness (in.)	Modulus (psi)	Poisson's Ratio	Strength R (psi)
1	P-501 PCC Surface	9.5	4,000,000	0.15	650
2	User Defined	12.0	150,000	0.35	0
3	User Defined	3.5	62,000	0.35	0
4	Subgrade	0	9,700	0.4	0

Airplane Information

No.	Name	Gross Wt. (lbs)	Annual Departures	% Annual Growth
1	S-5	5,000	340	5
2	S-10	10,000	200	5
3	S-12.5	12,500	110	5
4	S-15	15,000	13	5
5	S-20	20,000	44	5
6	S-25	25,000	2	5
7	D-15	15,000	113	5
8	D-20	20,000	16	5
9	D-25	25,000	36	5
10	D-30	30,000	26	5
11	D-40	40,000	73	5
12	D-50	50,000	2	5
13	D-75	75,000	10	5
14	D-100	100,000	860	5

Additional Airplane Information

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-5	0.00	0.00	12.6
2	S-10	0.00	0.00	8.92
3	S-12.5	0.00	0.00	7.99
4	S-15	0.00	0.00	7.3
5	S-20	0.00	0.00	7.74
6	S-25	0.00	0.00	7.99
7	D-15	0.00	0.00	5.48
8	D-20	0.00	0.00	5.18
9	D-25	0.00	0.00	5.03
10	D-30	0.00	0.00	4.89
11	D-40	0.00	0.00	4.36
12	D-50	0.00	0.00	3.73
13	D-75	0.00	0.00	3.6
14	D-100	0.48	0.48	3.55

User Is responsible For checking frost protection requirements.

Federal Aviation Administration FAARFIELD 2.0 PCR Report

FAARFIELD 2.0.18 (Build 05/26/2022)

Job Name: 2212ANGLE - Section 3

Section: Concete Option 1

This file name = PCR Results for New Rigid 2023-09-20 15:25:04

Evaluation pavement type is rigid and design program is FAARFIELD.

Section name: Concete Option 1 in job file: 2212ANGLE - Section 3.JOB.xml

Units = US Customary

Analysis Type: New Rigid

Subgrade Modulus =9,700psi (Subgrade Category is C)

Evaluation Pavement Thickness = 25.0 in.

Pass to Traffic Cycle (PtoTC) Ratio = 1.00

Maximum number of wheels per gear = 2

CDF = 1.230

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight	Tire Pressure (psi)	Annual Departure	20 Years Coverage
1	S-5	5,000	95.00	50	340	810
2	S-10	10,000	95.00	50	200	672
3	S-12.5	12,500	95.00	50	110	413
4	S-15	15,000	95.00	50	13	53
5	S-20	20,000	95.00	75	44	171
6	S-25	25,000	95.00	100	2	8
7	D-15	15,000	95.00	55	113	618
8	D-20	20,000	95.00	65	16	93
9	D-25	25,000	95.00	75	36	215
10	D-30	30,000	95.00	85	26	160
11	D-40	40,000	95.00	90	73	502
12	D-50	50,000	95.00	80	2	16
13	D-75	75,000	95.00	110	10	83
14	D-100	100,000	95.00	140	860	7,259

Results Table 1. Input Traffic Data

Results Table 2. PCR Value

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (lbs)	ACR Thick at max. MGW (in.)	PCR/R/C
1	D-100	855	98,791	10.3	301.1

Results Table 3. New Rigid ACR at Indicated Gross Weight and Strength

No.	Aircraft Name	Gross Weight (lbs)	Percent Gross Weight on Main Gear	Tire Pressure (psi)	ACR Thick (in.) (C)	ACR/R/C
1	S-5	5,000	95.00	50	2.0	10.4
2	S-10	10,000	95.00	50	2.4	19.8
3	S-12.5	12,500	95.00	50	2.8	26.1
4	S-15	15,000	95.00	50	3.2	32.3
5	S-20	20,000	95.00	75	4.4	57.6
6	S-25	25,000	95.00	100	5.3	83.1
7	D-15	15,000	95.00	55	3.0	28.3
8	D-20	20,000	95.00	65	3.8	43.9
9	D-25	25,000	95.00	75	4.3	55.8
10	D-30	30,000	95.00	85	5.0	73.9
11	D-40	40,000	95.00	90	6.1	107.8
12	D-50	50,000	95.00	80	6.4	120.7
13	D-75	75,000	95.00	110	8.6	212.8
14	D-100	100,000	95.00	140	10.4	305.8

Federal Aviation Administration FAARFIELD 2.0 Form 5010

FAARFIELD 2.0.18 (Build 05/26/2022)

RUNWAY DATA

Job Name: 2212ANGLE - Section 3

Section: Concete Option 1

Gross Weight (In THSDS)

35 S	82
36 D	99
37 2D	174
38 2D/2D2	0

39 PCR 3	301/R/C/W/T
----------	-------------