INTERFACE SHEAR STRENGTH CHARACTERISTICS OF EMULSIFIED TACK COATS

Nachiketa Patel Graduate Student Department of Civil & Environmental Engineering Louisiana Transportation Research Center Louisiana State University 51st Annual International Highway Engineering Exchange Program Conference September 27 - October 1, 2009 San Antonio, Texas

Presentation Outline

- Introduction
- Purpose of Applying Tack Coats
- Background
- Objectives
- Scope
- Methodology
- Discussion of Results
- Summary and Conclusion

What is a Tack Coat?

- A light application of asphalt on an existing non absorptive surface
 - Three Types Asphalt emulsion Cutback asphalt Asphalt cement

Ensures bond between surface being paved and the overlying course

Why Tack Coat is used?

- Monolithic structure
 withstand/transfer shear stresses from traffic loading
- Lack of bond between the wearing and binding layers
 - Cause slippage
 - activate distress mechanisms and rapidly lead to total failure

Background

Experience and empirical judgment

Selection of tack coat material type, application rate, and placement

Quality control and quality assurance testing

- rarely conducted
- resulting in the possibility of unacceptable performance at the interface,
- premature failure.

Background

- National Co-operative Highway Research Program Project 9-40
 - Optimization of Tack Coat for HMA Placement
 - Study the influence of tack coat type and application rate on the bond strength
 - Bonding characteristics testing
 - Direct Shear Test

Objectives

- Evaluate the interface shear strength of emulsified tack coats under a wide range of testing conditions commonly encountered in field applications
 - effect of emulsified tack coat type;
 - effect of application rate;
 - effect of dust;
 - effect of wetness (rain).

Scope

- Pavement surface types:
 - existing HMA, new HMA, milled HMA, and PCC
- Surface Condition:
 - clean and dirty
 - wet and dry
- Tack coat material types
 - Hot AC
 - □ PG 64-22
 - Emulsion
 - CRS-1, Trackless, SS-1h, SS-1
- Application rates (residual):
 - High (0.155 gsy), Medium (0.062 gsy), and Low (0.031 gsy)
- Surface coverages by tack coat:
 - 100% and 50%
- Confining Pressure
 - O psi and 20 psi

Scope

- Pavement surface types:
 - existing HMA, new HMA, milled HMA, and PCC
- Surface Condition:
 - clean and dirty
 - wet and dry
- Tack coat material types
 - Hot AC
 - **D** PG 64-22
 - Emulsion
 - CRS-1, Trackless, SS-1h, SS-1
- Application rates (residual):
 - High (0.155 gsy), Medium (0.062 gsy), and Low (0.031 gsy)
- Surface coverages by tack coat:
 - 100% and 50%
- Confining Pressure
 - O psi and 20 psi

The Test Factorial

Variable	Content	Number
Emulsified Tack Coat Type	SS-1h, CRS-1, Trackless	3
Coverage, %	100	1
Residual Application Rate, gsy	0.031, 0.062, 0.155	3
Rainy Condition	Dry, Wet	2
Dusty Condition	Clean, Dirty	2
Testing Temperature, ⁰ C	25	1
Confinement Pressure, psi	0	1
Number of Replicates	3	3

Methodology

Laboratory Mixed/Compacted

Field Mixed/Compacted

- Field test sections
- LTRC Pavement Research Facility
- computerized tack coat distributor truck
- conventional paving equipment

A Typical Section

Clean Sections – Dry vs. Wet

Clean and Dry

Clean and Wet

Dirty Sections – Dry vs. Wet

Dirty and Dry

Dirty and Wet

Surface Roughness

- Surface roughness for each lane was measured
- Dynatest 5051 Mark III road surface profiler was used

Lane No.	Macro texture Mean Profile Depth, mm
1	1.07
3	1.09
5	1.09

Test Site Preparation

Section Length and Width are established

Verification of Spray Rates

□ ASTM 2995 One Transverse Direction

Geometric Layout of Pads

Application of Dirt

$RATE = 0.34 \text{ kg/m}^2$

Equipment

- Computerized Tack Coat distributor truck
- □ Asphalt Products Unlimited., Inc
- Etnyre, Model 2000

Tack Coat Application

Spray Application of Tack Coat Existing HMA Surface Type 100% Coverage

0.031	gsy
Lov	V

0.062 gsy Medium *0.155 gsy* High

Application of Water

Rate = 0.27 l/m^2

HMA Overlay Construction

Laying HMA

HMA Overlay Construction

Sections are Re-established

Completion of Overlay Construction

Coring

Sample Retrieval and Bagging

Testing Equipment

- Developed equipment
 - Louisiana Interlayer Shear Strength Tester (LISST)
 - Interface Bond Strength
 - Shear
- Easy to use
- Portable

- Adoptable to existing load frames
- Reasonable cost
- accommodate both 100 and 150-mm sample diameter

Characterization of Interlayer Bond Strength

Louisiana Interlayer Shear Strength Tester (LISST)

Influence of Material/Application Rate

Surface Condition: Clean/Dry

Residual Application Rate, gsy

Influence of Material/Application Rate

Surface Condition: Dirty/Dry

Confining Pressure: 0 psi

Residual Application Rate, gsy

Influence of Surface Condition

Tack Coat Material: SS-1h

Influence of Surface Condition

Tack Coat Material: SS-1h

Influence of Surface Condition/Application Rate

Tack Coat Material: CRS-1

Surface Condition: Dry

Influence of Surface Condition/Application Rate

Tack Coat Material: Trackless

Surface Condition: Dry

Conclusion

Effect of Tack Coat Material on Interface Shear Strength
 Trackless is strongest followed by SS-1h and CRS-1
 All residual application rates

Effect of Application Rate on Interface Shear Strength
 Highest strength exhibited at high rate
 All materials

□ Effect of **Dirt** on Interface Shear Strength

- Presence of dirt exhibits greater interface strength than clean conditions
- Some cases, no difference statistically
- □ Effect of Wetness on Interface Shear Strength
 - No statistical difference between dry and wet conditions
 - Some cases, wetness exhibits higher strength

Acknowledgement

NCHRP

- Project 9-40

- » Optimization of Tack Coat for HMA Placement
- Technical Review Panel
- LDOTD

Asphalt Products Unlimited

- Distributor Truck
- SS-1h, CRS-1
- Coastal Bridge
 - HMA
- Blacklidge
 - Trackless

Thank You

